DOI QR코드

DOI QR Code

Effects of oscillation parameters on aerodynamic behavior of a rectangular 5:1 cylinder near resonance frequency

  • Pengcheng Zou (State Key Lab of Disaster Reduction in Civil Engineering, Tongji University) ;
  • Shuyang Cao (State Key Lab of Disaster Reduction in Civil Engineering, Tongji University) ;
  • Jinxin Cao (State Key Lab of Disaster Reduction in Civil Engineering, Tongji University)
  • Received : 2023.08.27
  • Accepted : 2023.12.05
  • Published : 2024.01.25

Abstract

Large Eddy Simulation (LES) is used to explore the influence of vibration frequency and amplitude on the aerodynamic performance of a rectangular cylinder with an aspect ratio of B/D=5 (B: breadth; D: depth of cylinder) at a Reynolds number of 22,000 near resonance frequency. In smooth flow conditions, the research employs a sequence of three-dimensional simulations under forced vibration with diverse frequency ratios fe / fo = 0.8-1.2 (fe : oscillation frequency; fo : Strouhal frequency when the rectangular cylinder is stationary ) and oscillation amplitudes Ah/D = 0.05 - 0.3. The individual influences of fe / fo and Ah/D on the characteristics of integrated and distributed aerodynamic forces are the focal points of discussion. For the integrated aerodynamic force, particular emphasis is placed on the analysis of the dependence of velocity-proportional component C1 and displacement-proportional component C2 of unsteady aerodynamic force on amplitude and frequency ratio. Near the resonance frequency, the dependencies of C1 and C2 on amplitude are stronger than that of frequency ratio. For the distributed aerodynamic force, the increase in frequency and amplitude promotes the position of the main vortex core and reattachment to the leading edge in the streamwise direction. In the spanwise direction, vibration enhances the spanwise correlation of aerodynamic force to weaken the three-dimensional effect of the flow field, and a lower frequency ratio and larger amplitude amplify this effect.

Keywords

Acknowledgement

The Natural Science Foundation of China (NSFC) Grant No. 52078382 and the State Key Laboratory of Disaster Reduction in Civil Engineering Grant No. SLDRCE19-A-01 are gratefully acknowledged as the funding sources for this study.

References

  1. Bartoli, G., Borsani, A., Mannini, C., Marra, A.M., Procino, L. and Ricciardelli, F. (2011), "Wind tunnel study on the aerodynamics of a 5:1 rectangular cylinder in smooth flow.", Proceedings of the Thirteenth International Conference on Wind Engineering, Amsterdam, The Netherlands. 
  2. Bishop, R.E.D., and Hassan, A.Y. (1964), "The lift and drag forces on a circular cylinder in a flowing fluid", Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 277(1368), 32-50. The Royal Society. 
  3. Blackburn, H.M. and Melbourne, W.H. (1997), "Sectional lift forces for an oscillating circular cylinder in smooth and turbulent flows", J. Fluid. Struct., 11(4), 413-431. https://doi.org/10.1006/jfls.1997.0086. 
  4. Borna, A., Habashi, W.G., McClure, G. and Nadarajah, S.K. (2013), "CFD-FSI simulation of vortex-induced vibrations of a circular cylinder with low mass-damping", Wind Struct., 16(5), 411-431. https://doi:10.12989/was.2013.16.5.411. 
  5. Bruno, L., Coste, N. and Fransos, D. (2012), "Simulated flow around a rectangular 5:1 cylinder: Spanwise discretisation effects and emerging flow features.", J. Wind Eng. Ind. Aerod., 104, 203-215. https://doi.org/10.1016/j.jweia.2012.03.018. 
  6. Bruno, L., Fransos, D., Coste, N. and Bosco, A. (2010), "3D flow around a rectangular cylinder: A computational study.", J. Wind Eng. Ind. Aerod., 98(6), 263-276. https://doi.org/10.1016/j.jweia.2009.10.005. 
  7. Bruno, L. and Salvetti, M.V. (2022), "Special issue on BARC benchmark", Wind Struct., 34(1), 00i-iii. https://doi.org/10.12989/was.2022.34.1.00i. 
  8. Bruno, L., Salvetti, M.V. and Ricciardelli, F. (2014), "Benchmark on the aerodynamics of a rectangular 5:1 cylinder: An overview after the first four years of activity.", J. Wind Eng. Ind. Aerod., 126, 87-106. https://doi.org/10.1016/j.jweia.2014.01.005. 
  9. Carberry, J., Sheridan, J. and Rockwell, D. (2005), "Controlled oscillations of a cylinder: forces and wake modes", J. Fluid Mech., 538(1), 31. https://doi.org/10.1017/S0022112005005197. 
  10. Chen, X., Matsumoto, M. and Kareem, A. (2000), "Time domain flutter and buffeting response analysis of bridges", J. Eng. Mech., 126(1), 7-16. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:1(7). 
  11. Chen, Z.Q., Yu, X.D., Yang, G. and Spencer, B.F. (2005), "Wind-induced self-excited loads on bridges", J. Struct. Eng., 131(12), 1783-1793. American Society of Civil Engineers. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:12(1783). 
  12. Chiarini, A. and Quadrio, M. (2021), "The turbulent flow over the BARC rectangular cylinder: A DNS study", Flow Turbul. Combust., 107(4), 875-899. https://doi.org/10.1007/s10494-021-00254-1. Osillating 
  13. Cimarelli, A., Leonforte, A. and Angeli, D. (2018), "Direct numerical simulation of the flow around a rectangular cylinder at a moderately high Reynolds number.", J. Wind Eng. Ind. Aerod., 174, 39-49. https://doi.org/10.1016/j.jweia.2017.12.020. 
  14. Deniz, S. and Staubli, T. (1997), "Oscillating rectangular and octagonal profiles: interaction of leading-and trailing-edge vortex formation", J. Fluids Struct., 11(1), 3-31.  https://doi.org/10.1006/jfls.1996.0065
  15. Gopalkrishnan, R. (1993), "Vortex-induced forces on oscillating bluff cylinders", Master thesis, Massachusetts Institute of Technology. 
  16. Haan, F. L., T. Wu, and A. Kareem. (2016), "Correlation Structures of Pressure Field and Integrated Forces on Oscillating Prism in Turbulent Flows.", J. Eng. Mech., 142 (5): 04016017. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001058. 
  17. Hao, W., Chen, X. and Q. Yang. (2020), "Extraction of nonlinear aerodynamic damping of crosswind-excited tall buildings from aeroelastic model tests.", J. Eng. Mech., 146(3), 04020006. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001731. 
  18. Hongyuan, J., Mai, S., Yihan, B. and Hiromichi, S. (2018), "Analysis of flow field around rectangular prism under forced vibration based on the application of DMD", Proceedings of the 25th National Symposium on Wind Engineering, 25, 313-318. https://doi.org/10.14887/kazekosymp.25.0_313. 
  19. Huang, L., Li, Y., Benites-Munoz, D., Windt, C.W., Feichtner, A., Tavakoli, S. and Tabor, G. (2022), "A review on the modelling of wave-structure interactions based on OpenFOAM", https://doi.org/10.51560/ofj.v2.65. 
  20. Jasak, H. (1996), "Error analysis and estimation for the finite volume method with applications to fluid flows.", Ph.D. Dissertation, Imperial College, University of London. 
  21. Jeong, J. and F. Hussain. (1995), "On the identification of a vortex.", J. Fluid Mech., 285: 69-94. Cambridge University Press. https://doi.org/10.1017/S0022112095000462. 
  22. Jiang, H., Li, S., Li, J., Su, Y., Li, Z. and Liu, J. (2022), "Effect of vibration on the aerodynamic behavior of a 5: 1 rectangular cylinder", J. Wind Eng. Ind. Aerod., 225, 104995. https://doi.org/10.1016/j.jweia.2022.104995. 
  23. Komatsu, S. and H. Kobayashi. (1980), "Vortex-induced oscillation of bluff cylinders", J. Wind Eng. Ind. Aerod., 6(3), 335-362. https://doi.org/10.1016/0167-6105(80)90010-0. 
  24. Lei, Y., Sun, Y., Zhang, T., Yang, X. and Li, M. (2022), "Spatial correlation of aerodynamic forces on 5:1 rectangular cylinder in different VIV stages", Wind Struct., 34(1), 81-90. https://doi.org/10.12989/was.2022.34.1.081. 
  25. Lin, S., Wang, Q., Nikitas, N. and Liao, H. (2019), "Effects of oscillation amplitude on motion-induced forces for 5: 1 rectangular cylinders", J. Wind Eng. Ind. Aerod., 186, 68-83. https://doi.org/10.1016/j.jweia.2019.01.002. 
  26. Liu, S., Zhao, L., Fang, G., Hu, C. and Ge, Y. (2021), "Investigation on aerodynamic force nonlinear evolution for a central-slotted box girder under torsional vortex-induced vibration", J. Fluids Struct., 106, 103380. https://doi.org/10.1016/j.jfluidstructs.2021.103380. 
  27. Mannini, C., Marra, A.M., Pigolotti, L. and Bartoli, G. (2017), "The effects of free-stream turbulence and angle of attack on the aerodynamics of a cylinder with rectangular 5: 1 cross section", J. Wind Eng. Ind. Aerod., 161, 42-58. https://doi.org/10.1016/j.jweia.2016.12.001. 
  28. Mannini, C., Soda, A. and Schewe. G. (2011), "Numerical investigation on the three-dimensional unsteady flow past a 5:1 rectangular cylinder.", J. Wind Eng. Ind. Aerod., 99(4), 469-482. https://doi.org/10.1016/j.jweia.2010.12.016. 
  29. Mannini, C. and Schewe, G. (2011), "Numerical study on the three-dimensional unsteadyflow past a 5:1 rectangular cylinder using the DES approach", Proceedings of the Thirteenth International Conference on Wind Engineering, Amsterdam, The Netherlands. 
  30. Matsumoto, M., Shirato, H., Araki, K., Haramura, T. and Hashimoto, T. (2003), "Spanwise coherence characteristics of surface pressure field on 2-D bluff bodies", J. Wind Eng. Ind. Aerod., 91(1-2), 155-163. https://doi.org/10.1016/S0167-6105(02)00342-2. 
  31. Nakamura, Y. and Mizota, T. (1975), "Unsteady lifts and wakes of oscillating rectangular prisms", J. Eng. Mech. Div., 101(6), 855-871. https://doi.org/10.1061/JMCEA3.0002077. 
  32. Nguyen, D.T., Hargreaves, D.M. and Owen, J.S. (2018), "Vortex-induced vibration of a 5:1 rectangular cylinder: A comparison of wind tunnel sectional model tests and computational simulations", J. Wind Eng. Ind. Aerod., 175, 1-16. https://doi.org/10.1016/j.jweia.2018.01.029. 
  33. Noguchi, K., Ito, Y. and Yagi, T. (2020), "Numerical evaluation of vortex-induced vibration amplitude of a box girder bridge using forced oscillation method", J. Wind Eng. Ind. Aerod., 196, 104029. https://doi.org/10.1016/j.jweia.2019.104029. 
  34. Paidoussis, M., Price, S. and De Langre, E. (2010), "Fluid-structure interactions: Cross-flow-induced instabilities", Cambridge University Press. https://doi:10.1017/CBO9780511760792 
  35. Patruno, L., Ricci, M., De Miranda, S. and Ubertini, F. (2016), "Numerical simulation of a 5: 1 rectangular cylinder at non-null angles of attack", J. Wind Eng. Ind. Aerod., 151, 146-157. https://doi.org/10.1016/j.jweia.2016.01.008. 
  36. Ricciardelli, F. (2010), "Effects of the vibration regime on the spanwise correlation of the aerodynamic forces on a 5:1 rectangular cylinder", J. Wind Eng. Ind. Aerod., 98(4-5), 215-225. https://doi.org/10.1016/j.jweia.2009.10.017. 
  37. Ricciardelli, F. and Marra, A.M. (2008), "Sectional aerodynamic forces and their longitudinal correlation on a vibrating 5:1 rectangular cylinder", Proceedings of the 6th International Colloquium on Bluff Body Aerodynamics and Applications, Milan, Italy, July. 
  38. Sarpkaya, T. (1995), "Hydrodynamic damping, flow-induced oscillations, and biharmonic response", J. Offshore Mech. Arct. Eng., 117(4), 232-238. https://doi.org/10.1115/1.2827228. 
  39. Scanlan, R.H. (1978), "The action of flexible bridges under wind, I: Flutter theory", J. Sound Vib., 60(2), 187-199. https://doi.org/10.1016/S0022-460X(78)80028-5. 
  40. Shimada, K. and T. Ishihara. (2012), "Predictability of unsteady two-dimensional k-ε model on the aerodynamic instabilities of some rectangular prisms", J. Fluid. Struct., 28, 20-39. https://doi.org/10.1016/j.jfluidstructs.2011.08.013. 
  41. Shiraishi, N. and M. Matsumoto. (1983), "On classification of vortex-induced oscillation and its application for bridge structures", J. Wind Eng. Ind. Aerod., 14(1), 419-430. https://doi.org/10.1016/0167-6105(83)90043-0. 
  42. Wang, C., Wen, Q., Zhou, S., Hua, X., Huang, Z. and Chen, Z. (2022), "Effects of end condition and aspect ratio on vortex-induced vibration of a 5: 1 rectangular cylinder", J. Fluids Struct., 109, 103480. https://doi.org/10.1016/j.jfluidstructs.2021.103480. 
  43. Wang, Q., Wu, B., Liao, H.L. and Mei, H. (2022), "Experimental investigation of amplitude-dependent self-excited aerodynamic forces on a 5: 1 rectangular cylinder", Wind Struct., 34(1), 73. https://doi.org/10.12989/was.2022.34.1.073. 
  44. Wang, Y. and X. Chen. (2022), "Extraction of aerodynamic damping and prediction of vortex-induced vibration of bridge deck using CFD simulation of forced vibration", J. Wind Eng. Ind. Aerod., 224, 104982. https://doi.org/10.1016/j.jweia.2022.104982. 
  45. Wilkinson, R.H. (1981), "Part II: Spanwise correlation and loading", Aeronaut. Q., 32(2), 111-125. Cambridge University Press. https://doi.org/10.1017/S0001925900009070. 
  46. Williamson, C.H.K. and Roshko, A. (1988), "Vortex formation in the wake of an oscillating cylinder.", J. Fluid. Struct., 2(4), 355-381. https://doi.org/10.1016/S0889-9746(88)90058-8. 
  47. Wu, B., Li, S., Li, K. and Zhang, L. (2020), "Numerical and experimental studies on the aerodynamics of a 5: 1 rectangular cylinder at angles of attack", J. Wind Eng. Ind. Aerod., 199, 104097. https://doi.org/10.1016/j.jweia.2020.104097. 
  48. Wu, J., Liu, Y., Zhang, D. and Cao, Z. (2023), "Numerical simulation of flow past an 8: 1 oscillating rectangular cylinder at Re= 22 000", Fluid Dyn. Res., 55(5), 055503. https://doi.org/10.1088/1873-7005/acf8ee. 
  49. Yang, Y., Zhao, Y., Wang, P. and Li, M. (2023), "Measurements of two-dimensional aerodynamic admittances of airfoil and rectangular cylinder in turbulent flow", J. Wind Eng. Ind. Aerod., 232, 105286. https://doi.org/10.1016/j.jweia.2022.105286. 
  50. Zhang, Y., Cao, S., Cao, J. and Wang, J. (2023), "Effects of turbulence intensity and integral length scale on the surface pressure on a rectangular 5: 1 cylinder", J. Wind Eng. Ind. Aerod., 236, 105406. https://doi.org/10.1016/j.jweia.2023.105406. 
  51. Zhang, Z. and Xu, F. (2020), "Spanwise length and mesh resolution effects on simulated flow around a 5:1 rectangular cylinder", J. Wind Eng. Ind. Aerod., 202, 104186. https://doi.org/10.1016/j.jweia.2020.104186. 
  52. Zou, P., Cao, S. and Cao, J. (2022), "Spanwise correlation and coherent structures of separated flow around rectangular 5:1 cylinder", J. Wind Eng. Ind. Aerod., 231, 105211. https://doi.org/10.1016/j.jweia.2022.105211.