DOI QR코드

DOI QR Code

Along and across-wind vibration control of shear wall-frame buildings with flexible base by using passive dynamic absorbers

  • Ivan F. Huergo (School of Engineering and Technologies, Universidad de Monterrey) ;
  • Hugo Hernandez-Barrios (School of Engineering, Universidad Michoacana de San Nicolas de Hidalgo) ;
  • Roberto Gomez-Martinez (Institute of Engineering, Universidad Nacional Autonoma de Mexico)
  • Received : 2023.07.06
  • Accepted : 2023.10.03
  • Published : 2024.01.25

Abstract

A flexible-base coupled-two-beam (CTB) discrete model with equivalent tuned mass dampers is used to assess the effect of soil-structure interaction (SSI) and different types of lateral resisting systems on the design of passive dynamic absorbers (PDAs) under the action of along-wind and across-wind loads due to vortex shedding. A total of five different PDAs are considered in this study: (1) tuned mass damper (TMD), (2) circular tuned sloshing damper (C-TSD), (3) rectangular tuned sloshing damper (R-TSD), (4) two-way liquid damper (TWLD) and (5) pendulum tuned mass damper (PTMD). By modifying the non-dimensional lateral stiffness ratio, the CTB model can consider lateral deformations varying from those of a flexural cantilever beam to those of a shear cantilever beam. The Monte Carlo simulation method was used to generate along-wind and across-wind loads correlated along the height of a real shear wall-frame building, which has similar fundamental periods of vibration and different modes of lateral deformation in the xz and yz planes, respectively. Ambient vibration tests were conducted on the building to identify its real lateral behavior and thus choose the most suitable parameters for the CTB model. Both alongwind and across-wind responses of the 144-meter-tall building were computed considering four soil types (hard rock, dense soil, stiff soil and soft soil) and a single PDA on its top, that is, 96 time-history analyses were carried out to assess the effect of SSI and lateral resisting system on the PDAs design. Based on the parametric analyses, the response significantly increases as the soil flexibility increases for both type of lateral wind loads, particularly for flexural-type deformations. The results show a great effectiveness of PDAs in controlling across-wind peak displacements and both along-wind and across-wind RMS accelerations, on the contrary, PDAs were ineffective in controlling along-wind peak displacements on all soil types and different kind of lateral deformation. Generally speaking, the maximum possible value of the PDA mass efficiency index increases as the soil flexibility increases, on the contrary, it decreases as the non-dimensional lateral stiffness ratio of the building increases; therefore, there is a significant increase of the vibration control effectiveness of PDAs for lateral flexural-type deformations on soft soils.

Keywords

Acknowledgement

The support received from Universidad de Monterrey, Universidad Michoacana de San Nicolas de Hidalgo and Universidad Nacional Autonoma de Mexico is gratefully acknowledged.

References

  1. Alkmim, M.H., Fabro, A.T. and de Morais, M.V.G. (2018), "Optimization of a tuned liquid column damper subject to an arbitrary stochastic wind", J. Brazil. Soc. Mech. Sci. Eng., 40, 551. https://doi.org/10.1007/s40430-018-1471-3. 
  2. Bachmann, H. (1995), Vibration Problems in Structures: Practical Guidelines, Birkhauser, Berlin. 
  3. Balendra, T., Wang, C.M. and Rakesh, G. (1999), "Vibration control of various types of buildings using TLCD", J. Wind. Eng. Ind. Aerod., 83(1-3), 197-208. https://doi.org/10.1016/S0167-6105(99)00072-0. 
  4. Balendra, T., Wang, C.M. and Rakesh, G. (1999). "Effectiveness of TLCD on various structural systems", Eng. Struct., 21(4), 291-305. https://doi.org/10.1016/S0141-0296(97)00156-9. 
  5. Bjornland, K.H.M. (2013), "Wind-induced dynamic response of high rise buildings", Master's Thesis, Norwegian University of Science and Technology (NTNU), Norway. 
  6. CFE (2008), Manual de Diseno de Obras Civiles: Diseno por viento, Instituto de Investigaciones Electricas, Mexico. 
  7. Chang, C.C. (1999), "Mass dampers and their optimal designs for building vibration control", Eng. Struct., 21(5), 454-463. https://doi.org/10.1016/S0141-0296(97)00213-7. 
  8. Chang, C.C. and Gu, M. (1999), "Suppression of vortex-excited vibration of tall buildings using tuned liquid dampers", J. Wind Eng. Ind. Aerod., 83(1-3), 225-237. https://doi.org/10.1016/S0167-6105(99)00074-4. 
  9. Chang, C.C. and Qu, W.L. (1998), "Unified dynamic absorber design formulas for wind-induced vibration control of tall buildings", Struct. Design Tall Spec. Build, 7(2), 147-166. https://doi.org/10.1002/(SICI)1099-1794(199806)7:2%3C147::AID-TAL107%3E3.0.CO;2-3 
  10. Chopra, A.K. (2007), Dynamics of Structures: Theory and Applications to Earthquake Engineering, Pearson, New Jersey. 
  11. Christopoulos, C. and Filiatrault, A. (2006), Principles of passive supplemental damping and seismic isolation, IUSS Press, Pavia, Italia. 
  12. Cluni, F., Gioffre, M. and Gusella, V. (2013), "Dynamic response of tall buildings to wind loads by reduced order equivalent shear-beam models", J. Wind Eng. Ind. Aero., 123(B), 339-348. https://doi.org/10.1016/j.jweia.2013.09.012. 
  13. Colherinhas, G.B., De Morais, M.V.G., Shzu, M.A.M. and Avila, S.M. (2019). "Optimal pendulum tuned mass damper design applied to high towers using genetic algorithms: two-DOF modeling", Struct. Stab. Dyn., 19(10), 1950125. https://doi.org/10.1142/S0219455419501256. 
  14. Connor, J.J. (2003), Introduction to Structural Motion Control, Prentice Hall. 
  15. DAS (1987), Draft Australian Standard-Revision of AS 1170-Part II, Standard Association of Australia; Australia. 
  16. Davenport, A.G. (1962), "The response of slender line-like structures to a gusty Wind", Proceedings - Institution of Civil Engineers, 23(3), 389-408. https://doi.org/10.1680/iicep.1962.10876. 
  17. Den Hartog, J.P. (1956), Mechanical Vibration, McGraw-Hill, New York, NY, USA. 
  18. Djerouni, S., Abdeddaim, M., Elias, S. and Rupakhety, R. (2021). "Optimum double mass tuned mass damper inerter for control of structure subjected to ground motions", J. Build. Eng., 44 103259. https://doi.org/10.1016/j.jobe.2021.103259 
  19. Djerouni, S., Elias, S., Abdeddaim, M. and De Domenico, D. (2022c), "Effectiveness of optimal shared multiple tuned mass damper inerters for pounding mitigation of adjacent buildings", Practice Periodic, Struct. Des. Construct., 28(1). https://doi.org/10.1061/(ASCE)SC.1943-5576.0000732. 
  20. Djerouni, S., Elias, S., Abdeddaim, M. and Rupakhety, R. (2022a), "Optimal design and performance assessment of multiple tuned mass damper inerters to mitigate seismic pounding of adjacent buildings", J. Build. Eng., 48, 103994. https://doi.org/10.1016/j.jobe.2022.103994. 
  21. Djerouni, S., Ounis, A., Elias, S., Abdeddaim, M. and Rupakhety, R. (2022b), "Optimization and performance assessment of tuned mass damper inerter systems for control of buildings subjected to pulse-like ground motions", Structures, 38, 139-156. https://doi.org/10.1016/j.istruc.2022.02.007. 
  22. Dym, C.L. and Williams, H.E. (2007), "Estimating fundamental frequencies of tall buildings", J. Struct. Eng., 133(10), 1479-1483. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:10(1479). 
  23. Elias, S. (2019), "Effect of SSI on vibration control of structures with tuned vibration absorbers", Shock Vib., 2019, 7463031, 12 pages. https://doi.org/10.1155/2019/7463031. 
  24. Ellis, B.R. (1980), "An assessment of the accuracy of predicting the fundamental natural frequencies of buildings and the implications concerning the dynamic analysis of structures", Proc. Institution Civil Eng., 69(3), 763-776, https://doi.org/10.1680/iicep.1980.2376 
  25. ESDU (2001), Characteristic of atmospheric turbulence near the ground, part II: single point data for strong winds (neutral atmosphere), Technical Reports Series, vol. 85020. 
  26. Ferrareto, J., Mazzilli, C. and Franca, R. (2015), "Wind-induced motion on tal buildings: a comfort criteria overview", J. Wind Eng. Ind. Aero., 142, 26-42. https://doi.org/10.1016/j.jweia.2015.03.001. 
  27. Fujita, K. and Takewaki, I. (2016), "Advanced system identification for high-rise building using shear-bending model", Front. Built Environ., 2(2016), https://doi.org/10.3389/fbuil.2016.00029. 
  28. Gao, Y., Wu, Y., Li, D., Liu, H. and Zhang, N. (2012). "An improved approximation for the spectral representation method in the simulation of spatially varying ground motions", Probabil. Eng. Mech., 29, 7-15. https://doi.org/10.1016/j.probengmech.2011.12.001. 
  29. Gazetas, C. (1991), "Formulas and charts for impedances of surface and embedded foundations", J. Geotech. Eng., 117, 1363. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:9(1363). 
  30. Gerges, R.R. and Vickery B.J. (2005), "Optimum design of pendulum-type tuned mass dampers", Struct. Des. Tall Spec. Build., 14(4), 353-368. https://doi.org/10.1002/tal.273. 
  31. Goel, R.K. and Chopra, A.K. (1997), "Period formulas for moment-resisting frame buildings", J. Struct. Eng., 123(11), 1454-1461. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:11(1454). 
  32. Goel, R.K. and Chopra, A.K. (1998), "Period formulas for concrete shear wall buildings", J. Struct. Eng., 124(4), 426-433. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:4(426). 
  33. Harris, R.I. and Deaves, D.M. (1981), "The structure of strong winds", Wind Engineering in the Eighties: Proceedings of the CIRIA Conference, Construction Industry Research and Information Association, London. https://cir.nii.ac.jp/crid/1570854174978636928. 
  34. Hart, G.C. and Wong, K. (1999) Structural Dynamics for Structural Engineers, 1st ed., John Wiley & Sons, Inc., United States of America. 
  35. Horikawa, K. (1978), Coastal Engineering, University of Tokyo Press, 5-118. 
  36. Huergo, I.F. and Hernandez-Barrios, H. and Patlan, C.M. (2020), "A continuous-discrete approach for pre-design of flexible-base tall buildings with fluid viscous dampers", Soil Dyn. Earth. Eng., 131, 106042. https://doi.org/10.1016/j.soildyn.2020.106042. 
  37. Huergo, I.F. and Hernandez, H. (2019), "Coupled shear-flexural model for dynamic analysis of fixed-base tall buildings with tuned mass dampers", Struct. Des. Tall Spec. Build., 28(17), e1671. https://doi.org/10.1002/tal.1671. 
  38. Huergo, I.F. and Hernandez, H. (2020), "Coupled-two-beam discrete model for dynamic analysis of tall buildings with tuned mass dampers including soil-structure interaction", Struct. Des. Tall Spec. Build., 29(1), e1683. https://doi.org/10.1002/tal.1683. 
  39. Huergo, I.F., Hernandez-Barrios, H. and Gomez-Martinez, R. (2022), "Analytical simulation of 3D wind-induced vibrations of rectangular tall buildings in time domain", Shock Vib., 2022, 7283610. https://doi.org/10.1155/2022/7283610. 
  40. Hwang J.S., Kwon, D.K., Noh, J. and Kareem A. (2023), "Identification of acrosswind load effects on tall slender structures", Wind Struct., 36(4), 221-236. https://doi.org/10.12989/was.2023.36.4.221. 
  41. Jafari, M. and Alipour, A. (2021), "Methodologies to mitigate wind-induced vibration of tall buildings: a state-of-the-art review", J. Build. Eng., 33, 101582. https://doi.org/10.1016/j.jobe.2020.101582. 
  42. Kareem, A. (1990), "Reduction of wind induced motion utilizing a tuned sloshing damper", J. Wind Eng. Ind. Aero., 36(2), 725-737. https://doi.org/10.1016/0167-6105(90)90070-S. 
  43. Krenk, S. (1996), "Wind field coherence and dynamic wind forces", IUTAM Symposium on Advances in Nonlinear Stochastic Mechanics, 47, 269-278. https://link.springer.com/chapter/10.1007/978-94-009-0321-0_25. 
  44. Lee, K.W., Min, K.W. and Lee, H.R. (2011), "Parameter identification of new bidirectional tuned liquid column and sloshing dampers", J. Sound Vib., 330(7), 1312-1327. https://doi.org/10.1016/j.jsv.2010.10.016. 
  45. Liang, S., Liu, S., Li, Q.S., Zhang, L. and Gu, M. (2002). "Mathematical model of acrosswind dynamic loads on rectangular tall buildings", J. Wind Eng. Ind. Aero., 90(12-15), 1757-1770. https://doi.org/10.1016/S0167-6105(02)00285-4. 
  46. Liu, M.Y., Chiang, W.L., Hwang, J.H. and Chu, C.R. (2008), "Wind-induced vibration of high-rise building with tuned mass damper including soil-structure interaction", J. Wind Eng. Ind. Aero., 96(6-7), 1092-1102. https://doi.org/10.1016/j.jweia.2007.06.034. 
  47. Mendes, M.V., Ribeiro, P.M.V. and Pedroso, L.J. (2019), "Effects of soil-structure interaction in seismic analysis of buildings with multiple pressurized tuned liquid column dampers", Lat. Am. J. Solids Struct., 16(08), e225, 21. https://doi.org/10.1590/1679-78255707. 
  48. Min, K.W., Kim, J. and Lee, H.R. (2014), "A design procedure of two-way liquid dampers for attenuation of wind-induced responses of tall buildings", J. Wind Eng. Ind. Aero., 129, 22-30. https://doi.org/10.1016/j.jweia.2014.03.003. 
  49. Miranda, E. and Reyes, C.J. (2002), "Approximate lateral drift demands in multistory buildings with nonuniform stiffness", J. Struct. Eng., 128(7), 840-849. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:7(840). 
  50. Miranda, E. and Taghavi, S. (2005), "Approximate floor acceleration demands in multistory buildings. I.: formulation", J. Struct. Eng., 131(2), 203-211. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:2(203). 
  51. National Research Council of Italy (CNR) (2008), Guide for the Assessment of Wind Actions and Effects on Structures, National Research Council, CNR-DT 207/2008. 
  52. NBCC (1990), National Building Code of Canada, National Research Council of Canada; Ottawa, Canada. 
  53. Newmark, N.M. and Hall W.J. (1982), Earthquake Spectra and Design, Earthquake Engineering Research Institute, Berkeley, California. 
  54. Ocak, A., Bekdas, G. and Nigdeli, S.M. (2021), "A metaheuristic-based optimum tuning approach for tuned liquid dampers for structures", Struct. Des. Tall Spec. Build., 31(3), e1907. https://doi.org/10.1002/tal.1907. 
  55. Ocak, A., Nigdeli, S.M. Bekdas, G., Kim, S. and Geem, Z.W. (2022). "Adaptive harmony search for tuned liquid damper optimization under seismic excitation", Appl. Sci., 12(5), 2645. https://doi.org/10.3390/app12052645. 
  56. Ozturk, B., Cetin, H., Dutkiewicz, M., Aydin, E. and Farsangi, E.N. (2022). "On the efficacy of a novel optimized tuned mass damper for minimizing dynamic responses of cantilever beams", Appl. Sci., 12(15), 7878. https://doi.org/10.3390/app12157878. 
  57. Qiao, H., Huang, P. and De Domenico, D. (2023). "Automatic optimal design of passive vibration control devices for buildings using two-level evolutionary algorithm", J. Build. Eng., 72, 106684. https://doi.org/10.1016/j.jobe.2023.106684. 
  58. Qiao, H., Huang, P., De Domenico, D. and Wang, Q. (2022). "Structural control of high-rise buildings subjected to multi-hazard excitations using inerter-based vibration absorbers", Eng. Struct., 266, 114666. https://doi.org/10.1016/j.engstruct.2022.114666. 
  59. Quan, Y., Gu, M. and Tamura, Y. (2005), "Experimental evaluation of aerodynamic damping of square super high-rise buildings", Wind Struct., 8(5), 309-324. https://doi.org/10.12989/was.2005.8.5.309. 
  60. Rahgozar, R. and Safari, P.K. (2004). "Structures under shock and impact VIII", N. Jones and C.A. Brebbia eds., WIT Press. 
  61. Sacks, M.P. and Swallow, J.C. (1993), "Tuned mass dampers for towers and buildings", In Proceedings of the Symposium on Structural Engineering in Natural Hazards Mitigation, Irvine, C.A; 640-645. 
  62. Sadek, F., Mohraz, B., Taylor, A.W. and Chung, R.M. (1998), "A method for estimating the parameters of tuned mass dampers for seismic applications", Earthq. Eng. Struct. Dyn., 26(6), 617-635. https://doi.org/10.1002/(SICI)1096-9845(199706)26:6%3C617::AID-EQE664%3E3.0.CO;2-Z. 
  63. Saeed, M.U., Sun, Z. and Elias, S. (2021), "Research developments in adaptive intelligent vibration control of smart civil structures", J. Low Frequency Noise, Vib. Active Control, 41(1), 292-329. https://doi.org/10.1177/14613484211032758. 
  64. Salehi H. and Burgueno R. (2018), "Emerging artificial intelligence methods in structural engineering", Eng. Struct., 171, 170-189. https://doi.org/10.1016/j.engstruct.2018.05.084. 
  65. Salvi, J., Pioldi, F. and Rizzi, E. (2018), "Optimum tuned mass dampers under seismic soil-structure interaction", Soil Dyn. Earthq. Eng., 114, 576-597. https://doi.org/10.1016/j.soildyn.2018.07.014. 
  66. Shinozuka, M., Yun, C.B. and Seya, H. (1990), "Stochastic methods in wind engineering", J. Wind Eng. Ind. Aerod., 36(2), 8278789-843. https://doi.org/10.1016/0167-6105(90)90080-V. 
  67. Stafford, B. and Coull, A. (1991), Tall Building Structures: Analysis and Design. John Wiley & Sons, New York, NY, USA. 
  68. Steyer, M.A. (2002), "Multifunctionality of distributed sloshing dampers in buildings", Master's Thesis, Massachusetts Institute of Technology, Massachusetts. 
  69. Sun, L.M., Fujino, Y., Pacheco, B.M. and Chaiseri, P. (1992), "Modelling of tuned liquid damper (TLD)", J. Wind Eng. Ind. Aero., 43(1-3), 1883-1894. https://doi.org/10.1016/0167-6105(92)90609-E. 
  70. Tairidis, G.K. and Stavroulakis, G.E. (2019), "Fuzzy and neuro-fuzzy control for smart structures In: Computational Intelligence and Optimization Methods for Control Engineering", Springer, 75-103. 
  71. Tamura, G. and Kareem, A. (2013), Advanced Structural Wind Engineering. Springer, Tokyo, Japan. 
  72. Vickery, B.J. (1968), "Load fluctuations in turbulent flow", J. Eng. Mech. Div., 94(1), 31. https://doi.org/10.1061/JMCEA3.0000941. 
  73. Wang, Z. and Giaralis, A. (2021), "Top-story softening for enhanced mitigation of vortex shedding-induced vibrations in wind-excited tuned mass damper inerter-equipped tall buildings", J. Struct. Eng., 147(1), 16. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002838. 
  74. Warburton, G.B. and Ayorinde, E.O. (1980), "Optimum absorber parameters for simple systems", Earthq. Eng. Struct. Dyn., 8(3), 197-217. https://doi.org/10.1002/eqe.4290080302. 
  75. Weber, F., Borchsenius, F., Distl, J. and Braun, C. (2022). "Performance of numerically optimized tuned mass damper with inerter (TMDI)", Appl. Sci., 12, 6204. https://doi.org/10.3390/app12126204. 
  76. Wu, D., Zhao, B. and Lu, X. (2018), "Dynamic behavior of upgraded rocking wall-moment frames using an extended coupled-two-beam model", Soil Dyn. Earthq. Eng., 115, 365-377. https://doi.org/10.1016/j.soildyn.2018.07.043. 
  77. Yuan, J.H., Chen, S.F. and Liu, Y. (2022), "Non-gaussian feature of fluctuating wind pressures on rectangular high-rise buildings with different side ratios", Wind Struct., 37(3), 211-227. https://doi.org/10.12989/was.2023.37.3.211. 
  78. Zhang, A., Zhang, S., Xu, X., Hui, Y. and Piccardo, G. (2023), "Characteristics, mathematical modeling and conditional simulation of cross-wind layer forces on square section high-rise buildings", Wind Struct., 35(6), 369-383. https://doi.org/10.12989/was.2022.35.6.369. 
  79. Zhou, Z., Xie, Z. and Zhang, L. (2023), "Vibration control in high-rise buildings with tuned liquid dampers - Numerical simulation and engineering applications", Wind Struct., 36(2), 91-103. https://doi.org/10.12989/was.2023.36.2.091. 
  80. Zhu, H., Yang, B., Zhang, Q., Pan, L. and Sun, S. (2021), "Wind engineering for high-rise buildings: A review", Wind Struct., 32(3), 249-265. https://doi.org/10.12989/was.2021.32.3.249.