Acknowledgement
The support received from Universidad de Monterrey, Universidad Michoacana de San Nicolas de Hidalgo and Universidad Nacional Autonoma de Mexico is gratefully acknowledged.
References
- Alkmim, M.H., Fabro, A.T. and de Morais, M.V.G. (2018), "Optimization of a tuned liquid column damper subject to an arbitrary stochastic wind", J. Brazil. Soc. Mech. Sci. Eng., 40, 551. https://doi.org/10.1007/s40430-018-1471-3.
- Bachmann, H. (1995), Vibration Problems in Structures: Practical Guidelines, Birkhauser, Berlin.
- Balendra, T., Wang, C.M. and Rakesh, G. (1999), "Vibration control of various types of buildings using TLCD", J. Wind. Eng. Ind. Aerod., 83(1-3), 197-208. https://doi.org/10.1016/S0167-6105(99)00072-0.
- Balendra, T., Wang, C.M. and Rakesh, G. (1999). "Effectiveness of TLCD on various structural systems", Eng. Struct., 21(4), 291-305. https://doi.org/10.1016/S0141-0296(97)00156-9.
- Bjornland, K.H.M. (2013), "Wind-induced dynamic response of high rise buildings", Master's Thesis, Norwegian University of Science and Technology (NTNU), Norway.
- CFE (2008), Manual de Diseno de Obras Civiles: Diseno por viento, Instituto de Investigaciones Electricas, Mexico.
- Chang, C.C. (1999), "Mass dampers and their optimal designs for building vibration control", Eng. Struct., 21(5), 454-463. https://doi.org/10.1016/S0141-0296(97)00213-7.
- Chang, C.C. and Gu, M. (1999), "Suppression of vortex-excited vibration of tall buildings using tuned liquid dampers", J. Wind Eng. Ind. Aerod., 83(1-3), 225-237. https://doi.org/10.1016/S0167-6105(99)00074-4.
- Chang, C.C. and Qu, W.L. (1998), "Unified dynamic absorber design formulas for wind-induced vibration control of tall buildings", Struct. Design Tall Spec. Build, 7(2), 147-166. https://doi.org/10.1002/(SICI)1099-1794(199806)7:2%3C147::AID-TAL107%3E3.0.CO;2-3
- Chopra, A.K. (2007), Dynamics of Structures: Theory and Applications to Earthquake Engineering, Pearson, New Jersey.
- Christopoulos, C. and Filiatrault, A. (2006), Principles of passive supplemental damping and seismic isolation, IUSS Press, Pavia, Italia.
- Cluni, F., Gioffre, M. and Gusella, V. (2013), "Dynamic response of tall buildings to wind loads by reduced order equivalent shear-beam models", J. Wind Eng. Ind. Aero., 123(B), 339-348. https://doi.org/10.1016/j.jweia.2013.09.012.
- Colherinhas, G.B., De Morais, M.V.G., Shzu, M.A.M. and Avila, S.M. (2019). "Optimal pendulum tuned mass damper design applied to high towers using genetic algorithms: two-DOF modeling", Struct. Stab. Dyn., 19(10), 1950125. https://doi.org/10.1142/S0219455419501256.
- Connor, J.J. (2003), Introduction to Structural Motion Control, Prentice Hall.
- DAS (1987), Draft Australian Standard-Revision of AS 1170-Part II, Standard Association of Australia; Australia.
- Davenport, A.G. (1962), "The response of slender line-like structures to a gusty Wind", Proceedings - Institution of Civil Engineers, 23(3), 389-408. https://doi.org/10.1680/iicep.1962.10876.
- Den Hartog, J.P. (1956), Mechanical Vibration, McGraw-Hill, New York, NY, USA.
- Djerouni, S., Abdeddaim, M., Elias, S. and Rupakhety, R. (2021). "Optimum double mass tuned mass damper inerter for control of structure subjected to ground motions", J. Build. Eng., 44 103259. https://doi.org/10.1016/j.jobe.2021.103259
- Djerouni, S., Elias, S., Abdeddaim, M. and De Domenico, D. (2022c), "Effectiveness of optimal shared multiple tuned mass damper inerters for pounding mitigation of adjacent buildings", Practice Periodic, Struct. Des. Construct., 28(1). https://doi.org/10.1061/(ASCE)SC.1943-5576.0000732.
- Djerouni, S., Elias, S., Abdeddaim, M. and Rupakhety, R. (2022a), "Optimal design and performance assessment of multiple tuned mass damper inerters to mitigate seismic pounding of adjacent buildings", J. Build. Eng., 48, 103994. https://doi.org/10.1016/j.jobe.2022.103994.
- Djerouni, S., Ounis, A., Elias, S., Abdeddaim, M. and Rupakhety, R. (2022b), "Optimization and performance assessment of tuned mass damper inerter systems for control of buildings subjected to pulse-like ground motions", Structures, 38, 139-156. https://doi.org/10.1016/j.istruc.2022.02.007.
- Dym, C.L. and Williams, H.E. (2007), "Estimating fundamental frequencies of tall buildings", J. Struct. Eng., 133(10), 1479-1483. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:10(1479).
- Elias, S. (2019), "Effect of SSI on vibration control of structures with tuned vibration absorbers", Shock Vib., 2019, 7463031, 12 pages. https://doi.org/10.1155/2019/7463031.
- Ellis, B.R. (1980), "An assessment of the accuracy of predicting the fundamental natural frequencies of buildings and the implications concerning the dynamic analysis of structures", Proc. Institution Civil Eng., 69(3), 763-776, https://doi.org/10.1680/iicep.1980.2376
- ESDU (2001), Characteristic of atmospheric turbulence near the ground, part II: single point data for strong winds (neutral atmosphere), Technical Reports Series, vol. 85020.
- Ferrareto, J., Mazzilli, C. and Franca, R. (2015), "Wind-induced motion on tal buildings: a comfort criteria overview", J. Wind Eng. Ind. Aero., 142, 26-42. https://doi.org/10.1016/j.jweia.2015.03.001.
- Fujita, K. and Takewaki, I. (2016), "Advanced system identification for high-rise building using shear-bending model", Front. Built Environ., 2(2016), https://doi.org/10.3389/fbuil.2016.00029.
- Gao, Y., Wu, Y., Li, D., Liu, H. and Zhang, N. (2012). "An improved approximation for the spectral representation method in the simulation of spatially varying ground motions", Probabil. Eng. Mech., 29, 7-15. https://doi.org/10.1016/j.probengmech.2011.12.001.
- Gazetas, C. (1991), "Formulas and charts for impedances of surface and embedded foundations", J. Geotech. Eng., 117, 1363. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:9(1363).
- Gerges, R.R. and Vickery B.J. (2005), "Optimum design of pendulum-type tuned mass dampers", Struct. Des. Tall Spec. Build., 14(4), 353-368. https://doi.org/10.1002/tal.273.
- Goel, R.K. and Chopra, A.K. (1997), "Period formulas for moment-resisting frame buildings", J. Struct. Eng., 123(11), 1454-1461. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:11(1454).
- Goel, R.K. and Chopra, A.K. (1998), "Period formulas for concrete shear wall buildings", J. Struct. Eng., 124(4), 426-433. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:4(426).
- Harris, R.I. and Deaves, D.M. (1981), "The structure of strong winds", Wind Engineering in the Eighties: Proceedings of the CIRIA Conference, Construction Industry Research and Information Association, London. https://cir.nii.ac.jp/crid/1570854174978636928.
- Hart, G.C. and Wong, K. (1999) Structural Dynamics for Structural Engineers, 1st ed., John Wiley & Sons, Inc., United States of America.
- Horikawa, K. (1978), Coastal Engineering, University of Tokyo Press, 5-118.
- Huergo, I.F. and Hernandez-Barrios, H. and Patlan, C.M. (2020), "A continuous-discrete approach for pre-design of flexible-base tall buildings with fluid viscous dampers", Soil Dyn. Earth. Eng., 131, 106042. https://doi.org/10.1016/j.soildyn.2020.106042.
- Huergo, I.F. and Hernandez, H. (2019), "Coupled shear-flexural model for dynamic analysis of fixed-base tall buildings with tuned mass dampers", Struct. Des. Tall Spec. Build., 28(17), e1671. https://doi.org/10.1002/tal.1671.
- Huergo, I.F. and Hernandez, H. (2020), "Coupled-two-beam discrete model for dynamic analysis of tall buildings with tuned mass dampers including soil-structure interaction", Struct. Des. Tall Spec. Build., 29(1), e1683. https://doi.org/10.1002/tal.1683.
- Huergo, I.F., Hernandez-Barrios, H. and Gomez-Martinez, R. (2022), "Analytical simulation of 3D wind-induced vibrations of rectangular tall buildings in time domain", Shock Vib., 2022, 7283610. https://doi.org/10.1155/2022/7283610.
- Hwang J.S., Kwon, D.K., Noh, J. and Kareem A. (2023), "Identification of acrosswind load effects on tall slender structures", Wind Struct., 36(4), 221-236. https://doi.org/10.12989/was.2023.36.4.221.
- Jafari, M. and Alipour, A. (2021), "Methodologies to mitigate wind-induced vibration of tall buildings: a state-of-the-art review", J. Build. Eng., 33, 101582. https://doi.org/10.1016/j.jobe.2020.101582.
- Kareem, A. (1990), "Reduction of wind induced motion utilizing a tuned sloshing damper", J. Wind Eng. Ind. Aero., 36(2), 725-737. https://doi.org/10.1016/0167-6105(90)90070-S.
- Krenk, S. (1996), "Wind field coherence and dynamic wind forces", IUTAM Symposium on Advances in Nonlinear Stochastic Mechanics, 47, 269-278. https://link.springer.com/chapter/10.1007/978-94-009-0321-0_25.
- Lee, K.W., Min, K.W. and Lee, H.R. (2011), "Parameter identification of new bidirectional tuned liquid column and sloshing dampers", J. Sound Vib., 330(7), 1312-1327. https://doi.org/10.1016/j.jsv.2010.10.016.
- Liang, S., Liu, S., Li, Q.S., Zhang, L. and Gu, M. (2002). "Mathematical model of acrosswind dynamic loads on rectangular tall buildings", J. Wind Eng. Ind. Aero., 90(12-15), 1757-1770. https://doi.org/10.1016/S0167-6105(02)00285-4.
- Liu, M.Y., Chiang, W.L., Hwang, J.H. and Chu, C.R. (2008), "Wind-induced vibration of high-rise building with tuned mass damper including soil-structure interaction", J. Wind Eng. Ind. Aero., 96(6-7), 1092-1102. https://doi.org/10.1016/j.jweia.2007.06.034.
- Mendes, M.V., Ribeiro, P.M.V. and Pedroso, L.J. (2019), "Effects of soil-structure interaction in seismic analysis of buildings with multiple pressurized tuned liquid column dampers", Lat. Am. J. Solids Struct., 16(08), e225, 21. https://doi.org/10.1590/1679-78255707.
- Min, K.W., Kim, J. and Lee, H.R. (2014), "A design procedure of two-way liquid dampers for attenuation of wind-induced responses of tall buildings", J. Wind Eng. Ind. Aero., 129, 22-30. https://doi.org/10.1016/j.jweia.2014.03.003.
- Miranda, E. and Reyes, C.J. (2002), "Approximate lateral drift demands in multistory buildings with nonuniform stiffness", J. Struct. Eng., 128(7), 840-849. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:7(840).
- Miranda, E. and Taghavi, S. (2005), "Approximate floor acceleration demands in multistory buildings. I.: formulation", J. Struct. Eng., 131(2), 203-211. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:2(203).
- National Research Council of Italy (CNR) (2008), Guide for the Assessment of Wind Actions and Effects on Structures, National Research Council, CNR-DT 207/2008.
- NBCC (1990), National Building Code of Canada, National Research Council of Canada; Ottawa, Canada.
- Newmark, N.M. and Hall W.J. (1982), Earthquake Spectra and Design, Earthquake Engineering Research Institute, Berkeley, California.
- Ocak, A., Bekdas, G. and Nigdeli, S.M. (2021), "A metaheuristic-based optimum tuning approach for tuned liquid dampers for structures", Struct. Des. Tall Spec. Build., 31(3), e1907. https://doi.org/10.1002/tal.1907.
- Ocak, A., Nigdeli, S.M. Bekdas, G., Kim, S. and Geem, Z.W. (2022). "Adaptive harmony search for tuned liquid damper optimization under seismic excitation", Appl. Sci., 12(5), 2645. https://doi.org/10.3390/app12052645.
- Ozturk, B., Cetin, H., Dutkiewicz, M., Aydin, E. and Farsangi, E.N. (2022). "On the efficacy of a novel optimized tuned mass damper for minimizing dynamic responses of cantilever beams", Appl. Sci., 12(15), 7878. https://doi.org/10.3390/app12157878.
- Qiao, H., Huang, P. and De Domenico, D. (2023). "Automatic optimal design of passive vibration control devices for buildings using two-level evolutionary algorithm", J. Build. Eng., 72, 106684. https://doi.org/10.1016/j.jobe.2023.106684.
- Qiao, H., Huang, P., De Domenico, D. and Wang, Q. (2022). "Structural control of high-rise buildings subjected to multi-hazard excitations using inerter-based vibration absorbers", Eng. Struct., 266, 114666. https://doi.org/10.1016/j.engstruct.2022.114666.
- Quan, Y., Gu, M. and Tamura, Y. (2005), "Experimental evaluation of aerodynamic damping of square super high-rise buildings", Wind Struct., 8(5), 309-324. https://doi.org/10.12989/was.2005.8.5.309.
- Rahgozar, R. and Safari, P.K. (2004). "Structures under shock and impact VIII", N. Jones and C.A. Brebbia eds., WIT Press.
- Sacks, M.P. and Swallow, J.C. (1993), "Tuned mass dampers for towers and buildings", In Proceedings of the Symposium on Structural Engineering in Natural Hazards Mitigation, Irvine, C.A; 640-645.
- Sadek, F., Mohraz, B., Taylor, A.W. and Chung, R.M. (1998), "A method for estimating the parameters of tuned mass dampers for seismic applications", Earthq. Eng. Struct. Dyn., 26(6), 617-635. https://doi.org/10.1002/(SICI)1096-9845(199706)26:6%3C617::AID-EQE664%3E3.0.CO;2-Z.
- Saeed, M.U., Sun, Z. and Elias, S. (2021), "Research developments in adaptive intelligent vibration control of smart civil structures", J. Low Frequency Noise, Vib. Active Control, 41(1), 292-329. https://doi.org/10.1177/14613484211032758.
- Salehi H. and Burgueno R. (2018), "Emerging artificial intelligence methods in structural engineering", Eng. Struct., 171, 170-189. https://doi.org/10.1016/j.engstruct.2018.05.084.
- Salvi, J., Pioldi, F. and Rizzi, E. (2018), "Optimum tuned mass dampers under seismic soil-structure interaction", Soil Dyn. Earthq. Eng., 114, 576-597. https://doi.org/10.1016/j.soildyn.2018.07.014.
- Shinozuka, M., Yun, C.B. and Seya, H. (1990), "Stochastic methods in wind engineering", J. Wind Eng. Ind. Aerod., 36(2), 8278789-843. https://doi.org/10.1016/0167-6105(90)90080-V.
- Stafford, B. and Coull, A. (1991), Tall Building Structures: Analysis and Design. John Wiley & Sons, New York, NY, USA.
- Steyer, M.A. (2002), "Multifunctionality of distributed sloshing dampers in buildings", Master's Thesis, Massachusetts Institute of Technology, Massachusetts.
- Sun, L.M., Fujino, Y., Pacheco, B.M. and Chaiseri, P. (1992), "Modelling of tuned liquid damper (TLD)", J. Wind Eng. Ind. Aero., 43(1-3), 1883-1894. https://doi.org/10.1016/0167-6105(92)90609-E.
- Tairidis, G.K. and Stavroulakis, G.E. (2019), "Fuzzy and neuro-fuzzy control for smart structures In: Computational Intelligence and Optimization Methods for Control Engineering", Springer, 75-103.
- Tamura, G. and Kareem, A. (2013), Advanced Structural Wind Engineering. Springer, Tokyo, Japan.
- Vickery, B.J. (1968), "Load fluctuations in turbulent flow", J. Eng. Mech. Div., 94(1), 31. https://doi.org/10.1061/JMCEA3.0000941.
- Wang, Z. and Giaralis, A. (2021), "Top-story softening for enhanced mitigation of vortex shedding-induced vibrations in wind-excited tuned mass damper inerter-equipped tall buildings", J. Struct. Eng., 147(1), 16. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002838.
- Warburton, G.B. and Ayorinde, E.O. (1980), "Optimum absorber parameters for simple systems", Earthq. Eng. Struct. Dyn., 8(3), 197-217. https://doi.org/10.1002/eqe.4290080302.
- Weber, F., Borchsenius, F., Distl, J. and Braun, C. (2022). "Performance of numerically optimized tuned mass damper with inerter (TMDI)", Appl. Sci., 12, 6204. https://doi.org/10.3390/app12126204.
- Wu, D., Zhao, B. and Lu, X. (2018), "Dynamic behavior of upgraded rocking wall-moment frames using an extended coupled-two-beam model", Soil Dyn. Earthq. Eng., 115, 365-377. https://doi.org/10.1016/j.soildyn.2018.07.043.
- Yuan, J.H., Chen, S.F. and Liu, Y. (2022), "Non-gaussian feature of fluctuating wind pressures on rectangular high-rise buildings with different side ratios", Wind Struct., 37(3), 211-227. https://doi.org/10.12989/was.2023.37.3.211.
- Zhang, A., Zhang, S., Xu, X., Hui, Y. and Piccardo, G. (2023), "Characteristics, mathematical modeling and conditional simulation of cross-wind layer forces on square section high-rise buildings", Wind Struct., 35(6), 369-383. https://doi.org/10.12989/was.2022.35.6.369.
- Zhou, Z., Xie, Z. and Zhang, L. (2023), "Vibration control in high-rise buildings with tuned liquid dampers - Numerical simulation and engineering applications", Wind Struct., 36(2), 91-103. https://doi.org/10.12989/was.2023.36.2.091.
- Zhu, H., Yang, B., Zhang, Q., Pan, L. and Sun, S. (2021), "Wind engineering for high-rise buildings: A review", Wind Struct., 32(3), 249-265. https://doi.org/10.12989/was.2021.32.3.249.