DOI QR코드

DOI QR Code

Separation-hybrid models for simulating nonstationary stochastic turbulent wind fields

  • Long Yan (School of Civil Engineering and Architecture, Wuhan Institute of Technology) ;
  • Zhangjun Liu (School of Civil Engineering and Architecture, Wuhan Institute of Technology) ;
  • Xinxin Ruan (School of Civil Engineering and Architecture, Wuhan Institute of Technology) ;
  • Bohang Xu (School of Civil Engineering and Architecture, Wuhan Institute of Technology)
  • Received : 2022.11.14
  • Accepted : 2023.10.15
  • Published : 2024.01.25

Abstract

In order to effectively simulate nonstationary stochastic turbulent wind fields, four separation hybrid (SEP-H) models are proposed in the present study. Based on the assumption that the lateral turbulence component at one single-point is uncorrelated with the longitudinal and vertical turbulence components, the fluctuating wind is separated into 2nV-1D and nV1D nonstationary stochastic vector processes. The first process can be expressed as double proper orthogonal decomposition (DPOD) or proper orthogonal decomposition and spectral representation method (POD-SRM), and the second process can be expressed as POD or SRM. On this basis, four SEP-H models of nonstationary stochastic turbulent wind fields are developed. In addition, the orthogonal random variables in the SEP-H models are presented as random orthogonal functions of elementary random variables. Meanwhile, the number theoretical method (NTM) is conveniently adopted to select representative points set of the elementary random variables. The POD-FFT (Fast Fourier transform) technique is introduced in frequency to give full play to the computational efficiency of the SEP-H models. Finally, taking a long-span bridge as the engineering background, the SEP-H models are compared with the dimension-reduction DPOD (DR-DPOD) model to verify the effectiveness and superiority of the proposed models.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 51978543), State Key Laboratory of Precision Blasting and Hubei Key Laboratory of Blasting Engineering, Jianghan University (No. PBSKL2022C07), and the Plan of Outstanding Young and Middle-aged Scientific and Technological Innovation Team in Universities of Hubei Province [Project No. T2020010]. The above foundations are highly appreciated.

References

  1. Carassale, L. and Solari, G. (2002), "Wind modes for structural dynamics: a continuous approach", Probabilist Eng Mech., 17(2), 157-166. https://doi.org/10.1016/S0266-8920(01)00036-4.
  2. Chen, L. and Letchford, C.W. (2005), "Simulation of multivariate stationary Gaussian stochastic processes: Hybrid spectral representation and proper orthogonal decomposition approach", J. Eng. Mech., 131(8), 801-808. https://ascelibrary.org/doi/full/10.1061/%28ASCE%290733-9399%282005%29131%3A8%28801%29.
  3. Caracoglia, L. (2014), "A stochastic model for examining alongwind loading uncertainty and intervention costs due to windinduced damage on tall buildings", Eng Struct., 78, 121-132. https://doi.org/10.1016/j.engstruct.2014.07.023.
  4. Chen, J.B., Chen, Y.W., Peng, Y.B., Zhu, S.Y. and Beer, M. (2019), "Stochastic harmonic function based wind field simulation and wind-induced reliability of super high-rise buildings", Mech. Syst. Signal. Pr., 133, 106264. https://doi:10.1016/j.ymssp.2019.106264.
  5. Di Paola, M. and Pisano, A.A. (1996), "Multivariate stochastic wave generation", Appl Ocean Res., 18(6), 361-365, http://dx.doi.org/10.1016/s0141-1187(97)00003-5.
  6. Di Paola, M. (1998), "Digital simulation of wind field velocity", J Wind Eng Ind Aerod., 74-76, 91-109. https://doi.org/10.1016/S0167-6105(98)00008-7.
  7. Di Paola, M. and Gullo, I. (2001), "Digital generation of multivariate wind field processes", Probab Eng Mech., 16(1), 1- 10, http://dx.doi.org/10.1016/s0266-8920(99)00032-6.
  8. EDSU 85020 (1993), "Characteristics of Atmospheric Turbulence Near the Ground. Part II: Single Point Data for Strong Winds (Neutral Atmosphere)", Eng Sci Data Unit., London.
  9. Holmes, J.D. (2007), Wind Loading of Structures, Taylor & Francis Group, New York, NY, USA.
  10. Huang, G.Q., Liao, H.L. and Li, M.S. (2013), "New formulation of Cholesky decomposition and applications in stochastic simulation", Probabilist. Eng. Mech., 34, 40-47. https://doi.org/10.1016/j.probengmech.2013.04.003.
  11. Huang, G.Q. (2015), "Application of proper orthogonal decomposition in Fast Fourier Transform-assisted multivariate nonstationary process simulation", J Eng Mech., 141(7), 0401501-15. https://ascelibrary.org/doi/full/10.1061/%28ASCE%29EM.1943-7889.0000923.
  12. Hua, X.G., Xu, K., Wang, Y.W., Wen, Q. and Chen, Z.Q. (2020), "Wind-induced response and dynamic characteristics of a supertall building under a typhoon event", Smart Struct. Syst., 25(1), 81-96. https://doi.org/10.12989/sss.2020.25.1.081.
  13. Huang, G.Q., Peng, L.L. and Kareem, A. (2020), "Data-driven simulation of multivariate nonstationary winds: A hybrid multivariate empirical mode decomposition and spectral representation method", J Wind Eng Ind Aerod., 197, 104073. https://doi.org/10.1016/j.jweia.2019.104073.
  14. Huang, Z.F., Xu, Y.L. and Zhan, S. (2021a), "Conditionally simulating nonstationary typhoon winds with time-varying coherences for long-span bridges", J. Wind Eng. Ind. Aerod., 212, 104599. https://doi.org/10.1016/j.jweia.2021.104599.
  15. Huang, M.F., Tang, G. and Ni, Y.Q. (2021b), "Reliability assessment of a building complex with four long-span roof structures based on wind tunnel experiments", J. Civ Struct. Health., 11, 1461-1475. https://doi.org/10.1007/s13349-021-00519-3.
  16. Li, J. and Chen, J.B. (2006), "The probability density evolution method for dynamic response analysis of non-linear stochastic structures", Int. J. Numer. Mech. Engng., 65, 882-903. https://doi:10.1002/nme.1479.
  17. Li, J. and Chen, J.B. (2007), "The number theoretical method in response analysis of nonlinear stochastic structures", Comput. Mech., 39(6), 693-708. https://doi:10.1007/s00466-006-0054-9.
  18. Li, J.H., Li, C.X., He, L. and Shen, J.H, (2015), "Extended modulating functions for simulation of wind velocities with weak and strong nonstationarity", Renew Energ., 83, 384-397. https://doi:10.1016/j.renene.2015.04.044.
  19. Liu, Z.J., Liu, W. and Peng, Y.B. (2016), "Random function based spectral representation of stationary and non-stationary stochastic processes", Probabilist Eng Mech., 45, 115-126. https://doi:10.1016/j.probengmech.2016.04.004.
  20. Liu, Z.J., Liu, Z.H. and Peng, Y.B. (2018), "Simulation of multivariate stationary stochastic processes using dimensionreduction representation methods", J Sound Vib., 418, 144-162. https://doi.org/10.1016/j.jsv.2017.12.029.
  21. Liu, Z.H., Liu, Z.J., He, C.G. and Lu, H.L. (2019a), "Dimensionreduced probabilistic approach of 3-D wind field for windinduced response analysis of transmission tower", J. Wind Eng. Ind. Aerod., 190, 309-321. https://doi:10.1016/j.jweia.2019.05.013.
  22. Liu, Z.J., He, C.G., Liu, Z.H. and Lu, H.L. (2019b), "Dimensionreduction simulation of stochastic wind velocity fields by two continuous approaches", Wind Struct., 29(6), 389-403. https://doi:10.12989/was.2019.29.6.389.
  23. Liu, Z.J., He, C.G., Liu, Z.X. and Lu H.L. (2020), "Dimension reduction model for two-spatial dimensional stochastic wind field: Hybrid approach of spectral decomposition and wavenumber spectral representation", Probabilist Eng Mech., 60, 103052. https://doi.org/10.1016/j.probengmech.2020.103052.
  24. Priestley, M.B. (1965), "Evolutionary spectra and non-stationary processes", J R Stat Soc B., 27(3), 204-237. https://doi.org/10.1111/j.2517-6161.1965.tb01488.x.
  25. Piccardo, G. and Solari, G. (2002), "3-D gust effect factor for slender vertical structures", Probabilist. Eng. Mech., 17(2), 143-155. https://doi:10.1016/S0266-8920(01)00034-0.
  26. Peng, L.L., Huang, G.Q., Chen, X.Z. and Kareem, A. (2017), "Simulation of multivariate nonstationary random processes: Hybrid stochastic wave and proper orthogonal decomposition approach", J Eng Mech., 143(9), 04017064. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001273.
  27. Rice, S.O. (1944), "Mathematical analysis of random noise", Bell Syst. Tech. J., 23, 282-332. https://sci-hub.etfine.com/10.1002/j.1538-7305.1945.tb00453.x.
  28. Shinozuka, M. (1971), "Simulation of multivariate and multidimensional random processes", J. Acoustic. Soc. Amer., 49(1), 357-368. https://doi.org/10.1121/1.1912338.
  29. Shinozuka, M. and Jan, C.M. (1972), "Digital simulation of random processes and its applications", J Sound Vib., 25(1), 111-128. http://dx.doi.org/10.1016/0022-460x(72)90600-1.
  30. Shinozuka, M. and Deodatis, G. (1991), "Simulation of stochastic processes by spectral representation", Appl Mech Rev., 44(4), 191-204. http://dx.doi.org/10.1115/1.3119501.
  31. Solari, G. and Poccardo, G. (2001), "Probabilistic 3-D turbulence modeling for gust buffeting of structures", Probabilist Eng Mech., 16(1), 73-86. https://doi:10.1016/S0266-8920(00)00010-2.
  32. Solari, G. and Tubino, F. (2002), "A turbulence model based on principal components", Probabilist Eng. Mech., 17,327-335. https://doi:10.1016/s0266-8920(02)00016-4.
  33. Shehata, A.Y., El Damatty, A.A. and Savory, E. (2005), "Finite element modeling of transmission line under downburst wind loading", Finite Elem Anal Des., 42(1), 71-89. https://doi.org/10.1016/j.finel.2005.05.005.
  34. Simiu, E. and Yeo, D.H. (2019), Wind Effects on Structures: Modern Structural Design for Wind, John Wiley & Sons, Hoboken, NJ, USA.
  35. Tubino, F. and Solari, G. (2005), "Double proper orthogonal decomposition for representing and simulating turbulence fields", J. Eng. Mech., 131(12), 1302-1312. https://doi:10.1061/(ASCE)0733-9399(2005)131:12(1302).
  36. Tao, T.Y., Wang, H., Yao, C.Y., He, X.H. and Kareem, A. (2018), "Efficacy of interpolation-enhanced schemes in random wind field simulation over long-span bridges", J. Bridge Eng., 23(3), 04017147. https://doi:10.1061/(ASCE)BE.1943-5592.0001203.
  37. Tao, T.Y., Wang, H. and Zhao, K.Y. (2021), "Efficient simulation of fully non-stationary random wind field based on reduced 2D Hermite interpolation", Mech Syst Signal Pr., 150, 107265. https://doi:10.1016/j.ymssp.2020.107265.
  38. Wu, Y.X., Li, R., Gao, Y.F. and Zhang, N. (2017), "Simple and efficient method to simulate homogenous multidimensional non-gaussian vector fields by the spectral representation method", J Eng Mech., 143(12), 06017016. http://dx.doi.org/10.1061/(asce)em.1943-7889.0001368.
  39. Wang, H., Xu, Z.D., Feng, D.M. and Tao, T.Y. (2019), "Nonstationary turbulent wind field simulation of bridge deck using non-negative matrix factorization", J Wind Eng Ind Aerod., 188, 235-246. https://doi:10.1016/j.jweia.2019.03.005.
  40. Zhang, L.L., Li, J. and Peng, Y.B. (2008), "Dynamic response and reliability analysis of tall buildings subject to wind loading", J. Wind Eng. Ind. Aerod., 96, 25-40. https://doi.org/10.1016/j.jweia.2007.03.001.