DOI QR코드

DOI QR Code

Real-time grid parameter estimation with grid-forming converters for robust synchronous power control

  • Shanshan Zhao (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Seung‑Ki Sul (Department of Electrical and Computer Engineering, Seoul National University)
  • Received : 2023.04.15
  • Accepted : 2023.09.13
  • Published : 2024.01.20

Abstract

The control system design of grid-forming (GFM) converters requires prior knowledge of grid parameters such as grid impedance, grid equivalent electromagnetic force (EMF), and short-circuit ratio (SCR), which are normally time-variant and preferably estimated in real time. However, existing estimation methods are either unable to estimate multiple parameters simultaneously or involve complex calculation algorithms for nonintrusive estimations. To address this issue, this study proposes a real-time grid parameter estimation method for GFM converters. Without introducing disturbances into the system, multiple parameters can be simultaneously estimated during the transient state with a simple algorithm, while the effects of the virtual impedance of the GFM converter and the output filter are both considered. In addition, a parameter estimation-based adaptive synchronous power control (SPC) is proposed, which exhibits improved dynamic performance and enhanced robustness of the GFM converter under various grid conditions. The validity of the proposed method is verified by simulation and hardware-in-loop-simulation (HILS) results.

Keywords

Acknowledgement

This study was supported by the BK21 FOUR program of the Education and Research Program for Future ICT Pioneers, Seoul National University in 2023.

References

  1. Hoffmann, N., Fuchs, F.W.: Minimal invasive equivalent grid impedance estimation in inductive-resistive power networks using extended Kalman filter. IEEE Trans. Power Electron. 29(2), 631-641 (2014) https://doi.org/10.1109/TPEL.2013.2259507
  2. Li, Y., Gu, Y., Green, T.C.: Revisiting grid-forming and grid-following inverters: a duality theory. IEEE Trans. Power Syst. 37(6), 4541-4554 (2022) https://doi.org/10.1109/TPWRS.2022.3151851
  3. Zhang, H., Xiang, W., Lin, W., Wen, J.: Grid forming converters in renewable energy sources dominated power grid: control strategy, stability, application, and challenges. J. Modern Power Syst. Clean Energy. 9(6), 1239-1256 (2021) https://doi.org/10.35833/MPCE.2021.000257
  4. Taul, M.G., Wang, X., Davari, P., Blaabjerg, F.: Current limiting control with enhanced dynamics of grid-forming converters during fault conditions. IEEE J. Emerg. Select, Top. Power Electron. 8(2), 1062-1073 (2020) https://doi.org/10.1109/JESTPE.2019.2931477
  5. Quan, X., Huang, A.Q., Yu, H.: A novel order reduced synchronous power control for grid-forming inverters. IEEE Trans. Industr. Electron. 67(12), 10989-10995 (2020) https://doi.org/10.1109/TIE.2019.2959485
  6. Liu, J., Miura, Y., Ise, T.: Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators. IEEE Trans. Power Electron. 31(5), 3600-3611 (2016)
  7. Zhang, W., Cantarellas, A.M., Rocabert, J., Luna, A., Rodriguez, P.: Synchronous power controller with flexible droop characteristics for renewable power generation systems. IEEE Trans. Sustain. Energy. 7(4), 1572-1582 (2016) https://doi.org/10.1109/TSTE.2016.2565059
  8. Huang, L., Wu, C., Zhou, D., Blaabjerg, F.: Impact of grid strength and impedance characteristics on the maximum power transfer capability of grid-connected inverters. Appl. Sci. 11(9), 4288 (2021) https://doi.org/10.3390/app11094288
  9. Ambia, M.N., Meng, K., Xiao, W., Al-Durra, A., Dong, Z.Y.: Interactive grid synchronization-based virtual synchronous generator control scheme on weak grid integration. IEEE Trans. Smart Grid. 13(5), 4057-4071 (2022) https://doi.org/10.1109/TSG.2021.3138999
  10. Egea-Alvarez, A., Barker, C., Hassan, F., Gomis-Bellmunt, O.: Capability curves of a VSC-HVDC connected to a weak AC grid considering stability and power limits. In: 11th IET International Conference on AC and DC Power Transmission (2015)
  11. Mohammed, N., Ravanji, M.H., Zhou, W., Bahrani, B.: Online grid impedance estimation-based adaptive control of virtual synchronous generators considering strong and weak grid conditions. IEEE Trans. Sustain. Energy. 14(1), 673-687 (2023) https://doi.org/10.1109/TSTE.2022.3223976
  12. Arif, B., Tarisciotti, L., Zanchetta, P., Clare, J.C., Degano, M.: Grid parameter estimation using model predictive direct power control. IEEE Trans. Ind. Appl. 51(6), 4614-4622 (2015) https://doi.org/10.1109/TIA.2015.2453132
  13. Sumner, M., Palethorpe, B., Thomas, D.W.P.: Impedance measurement for improved power quality-part 1: the measurement technique. IEEE Trans. Power Deliv. 19(3), 1442-1448 (2004) https://doi.org/10.1109/TPWRD.2004.829873
  14. Rhode, J.P., Kelley, A.W., Baran, M.E.: Complete characterization of utilization-voltage power system impedance using wideband measurement. IEEE Trans. Ind. Appl. 33(6), 1472-1479 (1997) https://doi.org/10.1109/28.649958
  15. Asiminoaei, L., Teodorescu, R., Blaabjerg, F., Borup, U.: Implementation and test of an online embedded grid impedance estimation technique for PV inverters. IEEE Trans. Ind. Electron. 52(4), 1136-1144 (2005) https://doi.org/10.1109/TIE.2005.851604
  16. Alves, D.K., Ribeiro, R.L.A., Costa, F.B., Rocha, T.O.A.: Realtime wavelet-based grid impedance estimation method. IEEE Trans. Ind. Electron. 66(10), 8263-8265 (2019) https://doi.org/10.1109/TIE.2018.2870407
  17. Ciobotaru, M., Teodorescu, R., Rodriguez, P., Timbus, A., Blaabjerg, F.: Online grid impedance estimation for single-phase grid-connected systems using PQ variations. In: IEEE Power Electronics Specialists Conference (2007)
  18. Timbus, A. V., Rodriguez, P., Teodorescu, R., Ciobotaru, M.: Line impedance estimation using active and reactive power variations. In: IEEE Power Electronics Specialists Conference (2007)
  19. Mohammed, N., Kerekes, T., Ciobotaru, M.: An online event-based grid impedance estimation technique using grid-connected inverters. IEEE Trans. Power Electron. 36(5), 6106-6117 (2021) https://doi.org/10.1109/TPEL.2020.3029872
  20. Serfontein, D., Rens, J., Botha, G., Desmet, J.: Continuous harmonic impedance assessment using online measurements. In: IEEE International Workshop on Applied Measurements for Power Systems (AMPS) (2015)
  21. Gu, H., Guo, X., Wang, D., Wu, W.: Real-time grid impedance estimation technique for grid-connected power converters. In: IEEE International Symposium on Industrial Electronics (2012)
  22. Cobreces, S., Bueno, E.J., Pizarro, D., Rodriguez, F.J., Huerta, F.: Grid impedance monitoring system for distributed power generation electronic interfaces. IEEE Trans. Instrum. Meas. 58(9), 3112-3121 (2009) https://doi.org/10.1109/TIM.2009.2016883
  23. Liu, S., Li, Y., Xiang, J.: An islanding detection method based on system identification. In: The 27th Chinese Control and Decision Conference (2015 CCDC) (2015)
  24. Ray, I.: Review of impedance-based analysis methods applied to grid-forming inverters in inverter-dominated grids. Energies 14(9), 2689 (2121) https://doi.org/10.3390/en14092686
  25. Fang, J., Deng, H., Goetz, S.M.: Grid impedance estimation through grid-forming power converters. IEEE Trans. Power Electron. 36(2), 2094-2104 (2021) https://doi.org/10.1109/TPEL.2020.3010874
  26. Sun, J., Yu, J., Qiu, J., Wang, Y.: Transient-responses-based grid impedance estimation for grid-forming converters. In: 2022 4th International Conference on Electrical Engineering and Control Technologies (CEECT) (2022)
  27. Liu, Z., et al.: An adaptive multi-mode switching control strategy to improve the stability of virtual synchronous generator with wide power grid strengths variation. IET Gener. Transm. Distrib. 17(2), 307-323 (2022) https://doi.org/10.1049/gtd2.12694
  28. Rathnayake, D.B., et al.: Grid forming inverter modeling, control, and applications. IEEE Access. 9, 114781-114807 (2121) https://doi.org/10.1109/ACCESS.2021.3104617
  29. Seyedi, M., Taher, S.A., Ganji, B., Guerrero, J.: A hybrid islanding detection method based on the rates of changes in voltage and active power for the multi-inverter systems. IEEE Trans. Smart Grid. 12(4), 2800-2811 (2021)  https://doi.org/10.1109/TSG.2021.3061567