DOI QR코드

DOI QR Code

Kaempferol induces apoptosis through the MAPK pathway and regulates JNK-mediated autophagy in MC-3 cells

  • Su‑Ji Jeon (Department of Companion and Laboratory Animal Science, Kongju National University) ;
  • Gi‑Hwan Jung (Department of Companion and Laboratory Animal Science, Kongju National University) ;
  • Eun‑Young Choi (Department of Companion and Laboratory Animal Science, Kongju National University) ;
  • Eun‑Ji Han (Department of Companion and Laboratory Animal Science, Kongju National University) ;
  • Jae‑Han Lee (Department of Companion and Laboratory Animal Science, Kongju National University) ;
  • So‑Hee Han (Department of Companion and Laboratory Animal Science, Kongju National University) ;
  • Joong‑Seok Woo (Department of Companion and Laboratory Animal Science, Kongju National University) ;
  • Soo‑Hyun Jung (Department of Companion and Laboratory Animal Science, Kongju National University) ;
  • Ji‑Youn Jung (Department of Companion and Laboratory Animal Science, Kongju National University)
  • Received : 2023.04.05
  • Accepted : 2023.08.02
  • Published : 2024.01.15

Abstract

This study sought to determine the anticancer effect of kaempferol, a glycone-type flavonoid glycoside with various pharmacological benefits, on human oral cancer MC-3 cells. In vitro studies comprised a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, annexin V and propidium iodide staining, western blotting analysis, and acridine orange staining, while the in vivo studies entailed a xenograft model, hematoxylin and eosin staining, and TdT-mediated dUTP-biotin nick end labelling. In vitro, kaempferol reduced the rate of survival of MC-3 cells, mediated intrinsic apoptosis, increased the number of acidic vesicular organelles, and altered the expression of autophagy-related proteins. Further, treatment with the autophagy inhibitors revealed that the induced autophagy had a cytoprotective effect on apoptosis in kaempferoltreated MC-3 cells. Kaempferol also decreased the expression of phosphorylated extracellular signal-regulated kinase and increased that of phosphorylated c-Jun N-terminal kinase (p-JNK) and phosphorylated p38 kinase in MC-3 cells, suggesting the occurrence of mitogen-activated protein kinase-mediated apoptosis and JNK-mediated autophagy. In vivo, kaempferol reduced tumor growth inducing apoptosis and autophagy. These results showed that kaempferol has the potential use as an adjunctive agent in treating oral cancer.

Keywords

Acknowledgement

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2021R1A2C1010912).

References

  1. Zhang L, Li L, Wang Y, Liu Y, Li C (2014) MC3 mucoepidermoid carcinoma cell line enriched cancer stem-like cells following chemotherapy. Oncol Lett 7:1569-1575. https://doi.org/10.3892/ol.2014.1902
  2. Jang BS, Lim SA (2020) Anticancer effect of methanol extract of Erigeron bonariensis on oral cancer cells. J Korean Soc Dent Hyg 20:763-771. https://doi.org/10.13065/jksdh.20200070
  3. Marur S, Forastiere AA (2016) Head, neck squamous cell carcinoma: update on epidemiology, diagnosis, and treatment. Mayo Clin Proc 91:386-396. https://doi.org/10.1016/j.mayocp.2015.12.017
  4. Shen J, Huang C, Jiang L, Gao F, Wang Z, Zhang Y, Bai J, Zhou H, Chen Q (2007) Enhancement of cisplatin induced apoptosis by suberoylanilide hydroxamic acid in human oral squamous cell carcinoma cell lines. Bio chem Pharmacol 73:1901-1909. https://doi.org/10.1016/j.bcp.2007.03.009
  5. Choi ES, Oh S, Jang B, Yu HJ, Shin JA, Cho NP, Yang IH, Won DH, Kwon HJ, Hong SD, Cho SD (2017) Silymarin and its active component silibinin act as novel therapeutic alternatives for salivary gland cancer by targeting the ERK1/2-Bim signaling cascade. Cell Oncol (Dordr) 40:235-246. https://doi.org/10.1007/s13402-017-0318-8
  6. Lee HE, Shin JA, Jeong JH, Jeon JG, Lee MH, Cho SD (2016) Anticancer activity of Ashwagandha against human head and neck cancer cell lines. J Oral Pathol Med 5:193-201. https://doi.org/10.1111/jop.12353
  7. Shin JA, Shim JH, Jeon JG, Choi KH, Choi ES, Cho NP, Cho SD (2011) Apoptotic effect of Polygonum cuspidatum in oral cancer cells through the regulation of specifcity protein 1. Oral Dis 17:162-170. https://doi.org/10.1111/j.1601-0825.2010.01710.x
  8. Imran M, Salehi B, Sharif-Rad J, Aslam Gondal T, Saeed F, Imran A, Shahbaz M, Tsouh Fokou PV, Umair Arshad M, Khan H, Guerreiro SG, Martins N, Estevinho LM (2019) Kaempferol: a key emphasis to its anticancer potential. Molecules 24:2277. https://doi.org/10.3390/molecules24122277
  9. Panche A, Diwan A, Chandra S (2016) Flavonoids: an overview. J Nutr Sci 5:e47. https://doi.org/10.1017/jns.2016.41
  10. uerrero C, Lopez-Lazaro MA (2011) Review on the dietary flavonoid kaempferol. Mini Rev Med Chem 11:298-344. https://doi. org/10.2174/138955711795305335
  11. Pei J, Chen A, Zhao L, Cao F, Ding G, Xiao W (2017) OnePot synthesis of hyperoside by a three-enzyme cascade using a UDP-Galactose regeneration system. J Agric Food Chem 65:6042-6048. https://doi.org/10.1021/acs.jafc.7b02320
  12. Neuhouser ML (2004) Dietary flavonoids and cancer risk: evidence from human population studies. Nutr Cancer 50:1-7. https://doi.org/10.1207/s15327914nc5001_1
  13. Goldar S, Khaniani MS, Derakhshan SM, Baradaran B (2015) Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev 16:2129-2144. https://doi.org/10.7314/APJCP.2015.16.6.2129
  14. Pistritto G, Trisciuoglio D, Ceci C, Garuf A, D'Orazi G (2016) Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging 8:603. https://doi.org/10.18632/aging.100934
  15. Martinou JC, Youle RJ (2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 21:92-101. https://doi.org/10.1016/j.devcel.2011.06.017
  16. Mizushima N (2007) Autophagy: process function. Genes Dev 21:2861-2873. https://doi.org/10.1101/gad.1599207
  17. Jung CH, Ro SH, Cao J, Otto NM, Kim DH (2010) mTOR regulation of autophagy. FEBS Lett 584:1287-1295. https://doi.org/10. 1016/j.febslet.2010.01.017 https://doi.org/10.1016/j.febslet.2010.01.017
  18. Bjorkoy G, Lamark T, Pankiv S, Overvatn A, Brech A, Johansen T (2009) Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol 452:181-197. https://doi.org/10.1016/S0076-6879(08)03612-4
  19. Mathew R, Karantza-Wadsworth V, White E (2007) Role of autophagy in cancer. Nat Rev Cancer 7:961-967. https://doi.org/10.1038/nrc2254
  20. Yue J, Lopez JM (2020) Understanding MAPK signaling pathways in apoptosis. Int J Mol Sci 21:2346. https://doi.org/10.3390/ijms21072346
  21. Zhou G, Yang J, Song P (2019) Correlation of ERK/MAPK signaling pathway with proliferation and apoptosis of colon cancer cells. Oncol Lett 17:2266-2270. https://doi.org/10.3892/ol.2018.9857
  22. Zhou YY, Li Y, Jiang WQ, Zhou LF (2015) MAPK/JNK signalling: a potential autophagy regulation pathway. Biosci Rep 35:e00199. https://doi.org/10.1042/BSR20140141
  23. Marino G, Niso-Santano M, Baehrecke EH, Kroemer G (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15:81-94. https://doi.org/10.1038/nrm3735
  24. Yang GH, Jarvis BB, Chung YJ, Pestka JJ (2000) Apoptosis induction by the satratoxins and other trichothecene mycotoxins: relationship to ERK, p38 MAPK, and SAPK/JNK activation. Toxicol Appl Pharmacol 164:149-160. https://doi.org/10.1006/taap.1999.8888
  25. Song H, Bao J, Wei Y, Chen Y, Mao X, Li J, Yang Z, Xue Y (2015) Kaempferol inhibits gastric cancer tumor growth: an in vitro and in vivo study. Oncol Rep 33:868-874. https://doi.org/10.3892/or.2014.3662
  26. Li Q, Wei L, Lin S, Chen Y, Lin J, Peng J (2019) Synergistic effect of kaempferol and 5-fuorouracil on the growth of colorectal cancer cells by regulating the PI3K/Akt signaling pathway. Mol Med Rep 20:728-734. https://doi.org/10.3892/mmr.2019.10296
  27. Xu X, Lai Y, Hua ZC (2019) Apoptosis and apoptotic body: disease message and therapeutic target potentials. Biosci Rep 39:BSR20180992. https://doi.org/10.1042/BSR20180992
  28. Shlomovitz I, Speir M, Gerlic M (2019) Flipping the dogma - phosphatidylserine in non-apoptotic cell death. Cell Commun Signal 17:139. https://doi.org/10.1186/s12964-019-0437-0
  29. Perlman H, Zhang X, Chen MW, Walsh K, Buttyan R (1999) An elevated bax/bcl-2 ratio corresponds with the onset of prostate epithelial cell apoptosis. Cell Death Difer 6:48-54. https://doi.org/10.1038/sj.cdd.4400453
  30. Wang ZQ, Stingl L, Morrison C, Jantsch M, Los M, SchulzeOsthof K, Wagner EF (1997) PARP is important for genomic stability but dispensable in apoptosis. Genes Dev 11:18:2347-2358. https://doi.org/10.1101/gad.11.18.2347
  31. Marfe G, Tafani M, Indelicato M, Sinibaldi-Salimei P, Reali V, Pucci B, Fini M, Russo MA (2009) Kaempferol induces apoptosis in two diferent cell lines via akt inactivation, bax and SIRT3 activation, and mitochondrial dysfunction. J Cell Biol chem 106:643-650. https://doi.org/10.1002/jcb.22044
  32. Tanida I, Waguri S, Clifton NJ (2010) Measurement of autophagy in cells and tissues. Method Mol Biol 648:193-214. https://doi.org/10.1007/978-1-60761-756-3_13
  33. Chen Y, Azad MB, Gibson SB (2010) Methods for detecting autophagy and determining autophagy-induced cell death. Can J Physiol Pharmacol 88:85-295. https://doi.org/10.1139/Y10-010
  34. 1, Jung CH, Ro SH, Cao J, Otto NM, Kim DH (2014) mTOR regulation of autophagy. FEBS Lett 584:1287-1295. https://doi.org/10.1016/j.febslet.2010.01.017
  35. Liu T, Zhang J, Li K, Deng L, Wang H (2020) Combination of an autophagy inducer and an autophagy inhibitor a smarter strategy emerging in cancer therapy. Front Pharmacol 11:408. https://doi.org/10.3389/fphar.2020.00408
  36. Kim TW, Lee SY, Kim M, Cheon C, Ko SG (2018) Kaempferol induces autophagic cell death via IRE1-JNK-CHOP pathway and inhibition of G9a in gastric cancer cells. Cell Death Dis 9:875. https://doi.org/10.1038/s41419-018-0930-1
  37. Dhanasekaran DN, Reddy EP (2017) JNK-signaling: a multiplexing hub in programmed cell death. Genes Cancer 8:682-694. https://doi.org/10.18632/genesandcancer.155
  38. Liu H, Zhou M (2017) Antitumor effect of quercetin on Y79 retinoblastoma cells via activation of JNK and p38 MAPK pathways. BMC Complement Altern Med 17:53. https://doi.org/10.1186/s12906-017-2023-6
  39. Nam TW, Yoo CI, Kim HT, Kwon CH, Park JY, Kim YK (2008) The flavonoid quercetin induces apoptosis and inhibits migration through a MAPK-dependent mechanism in osteoblasts. J Bone Miner Metab 26:551-560. https://doi.org/10.1007/s00774-008-0864-2
  40. Huang WW, Chiu YJ, Fan MJ, Lu HF, Yeh HF, Li KH, Chen PY, Chung JG, Yang JS (2010) Kaempferol induced apoptosis via endoplasmic reticulum stress and mitochondria-dependent pathway in human osteosarcoma U-2 OS cells. Mol Nutr Food Res 54:1585-1595. https://doi.org/10.1002/mnfr.201000005
  41. Song H, Bao J, Wei Y, Chen Y, Mao X, Li J, Yang Z, Xue Y (2015) Kaempferol inhibits gastric cancer tumor growth: an in vitro and in vivo study. Oncol Rep 33:868-874. https://doi.org/10.3892/or.2014.3662
  42. Qin Y, Cui W, Yang X, Tong B (2016) Kaempferol inhibits the growth and metastasis of cholangiocarcinoma in vitro and in vivo. Acta Biochim Biophys Sin 48:238-245. https://doi.org/10.1093/abbs/gmv133