DOI QR코드

DOI QR Code

Effect of unequal spans on the collapse behavior of multi-story frames with reduced beam section connections

  • Zheng Tan (School of Civil Engineering, Xi'an University of Architecture and Technology) ;
  • Wei-hui Zhong (School of Civil Engineering, Xi'an University of Architecture and Technology) ;
  • Bao Meng (School of Civil Engineering, Xi'an University of Architecture and Technology) ;
  • Li-min Tian (School of Civil Engineering, Xi'an University of Architecture and Technology) ;
  • Yao Gao (School of Civil Engineering, Xi'an University of Architecture and Technology) ;
  • Yu-hui Zheng (School of Civil Engineering, Xi'an University of Architecture and Technology) ;
  • Hong-Chen Wang (China Northwest Architecture Design and Research Institute Co., Ltd)
  • 투고 : 2021.12.06
  • 심사 : 2023.11.16
  • 발행 : 2024.01.10

초록

Following an internal column failure, adjacent double-span beams above the failed column will play a critical role in the load transfer and internal force redistribution within the remaining structure, and the span-to-depth ratios of double-span beams significantly influence the structural resistance capacity against progressive collapse. Most existing studies have focused on the collapse-resistant performances of single-story symmetric structures, whereas limited published works are available on the collapse resistances of multi-story steel frames with unequal spans. To this end, in this study, numerical models based on shell elements were employed to investigate the structural behavior of multi-story steel frames with unequal spans. The simulation models were validated using the previous experimental results obtained for single- and two-story steel frames, and the load-displacement responses and internal force development of unequal-span three-story steel frames under three cases were comprehensively analyzed. In addition, the specific contributions of the different mechanism resistances of unequal-span, double-span beams of each story were separated quantitatively using the energy equilibrium theory, with an aim to gain a deeper level of understanding of the load-resistance mechanisms in the unequal-span steel frames. The results showed that the axial and flexural mechanism resistances were determined by the span ratio and linear stiffness ratio of double-span beams, respectively.

키워드

과제정보

The research was supported by the National Natural Science Foundation of China (Nos. 51678476, 51908449). The authors also gratefully acknowledge the financial support provided by the scientific research plan projects of Shaanxi Education Department (Nos. 20JY033, 20JK0713).

참고문헌

  1. Alashker, Y., El-Tawil, S. and Sadek, F. (2010), "Progressive collapse resistance of steel-concrete composite floors", J. Struct. Eng., 136(10), 1187-1196. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000230.
  2. Alireza, K. and Hossein, O. (2018), "Evaluation of vierendeel peripheral frame as supporting structural element for prevention of progressive collapse", Steel Compos. Struct., 26(5), 549-556. https://doi.org/10.12989/scs.2018.26.5.549.
  3. Alrubaidi, M., Elsanadedy, H., Abbas, H., Almusallam, T. and Al-Salloum, Y. (2020), "Investigation of different steel intermediate moment frame connections under column-loss scenario", Thin-Walled. Struct., 154, 106875. https://doi.org/10.1016/j.tws.2020.106875.
  4. ANSI/AISC 358-10 (2014), Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications, Chicago: AISC.
  5. Dinu, F., Marginean, I. and Dubina, D. (2017), "Experimental testing and numerical modelling of steel moment-frame connections under column loss", Eng. Struct., 151, 861-878. https://doi.org/10.1016/j.engstruct.2017.08.068.
  6. DoD (Department of Defense) (2013), Design of Buildings to Resist Progressive Collapse. Unified facilities criteria (UFC) 4-023-03. Washington D C: DoD.
  7. Forquin, P. and Chen, W. (2017), "An experimental investigation of the progressive collapse resistance of beam-column RC sub-assemblages", Constr. Build. Mater., 152, 1068-1084. https://doi.org/10.1016/j.conbuildmat.2017.05.179.
  8. Fu, Q.N. and Tan, K.H. (2019), "Numerical study on steel-concrete composite floor systems under corner column removal scenario", Struct., 21, 33-44. https://doi.org/10.1016/j.istruc.2019.06.003.
  9. GB 50017-2017 (2017), Standard for Design of Steel Structures. China Architecture & Building Press, Beijing, China.
  10. Izzuddin, B.A., Vlassis, A.G., Elghazouli, A.Y. and Nethercot, D.A. (2008), "Progressive collapse of multi-storey buildings due to sudden column loss - Part I: Simplified assessment framework", Eng. Struct., 30(5), 1308-1318. https://doi.org/10.1016/j.engstruct.2007.07.011.
  11. Kiakojouri, F., Valerio, D.B., Chiaia, B. and Sheidaii, M.R. (2022), "Strengthening and retrofitting techniques to mitigate progressive collapse: A critical review and future research agenda", Eng. Struct., 262, 114274. https://doi.org/10.1016/j.engstruct.2022.114274.
  12. Kim, S., Lee, C.H. and Lee, K. (2015), "Effects of floor slab on progressive collapse resistance of steel moment frames", J. Constr. Steel. Res., 110, 182-190. https://doi.org/10.1016/j.jcsr.2015.02.013.
  13. Li, G.Q., Li, L.L., Jiang, B.H. and Lu, Y. (2018), "Experimental study on progressive collapse resistance of steel frames under a sudden column removal scenario", J. Constr. Steel. Res., 147, 1-15. https://doi.org/10.1016/j.jcsr.2018.03.023.
  14. Li, H.H. and El-Tawil, S. (2014), "Three-dimensional effects and collapse resistance mechanisms in steel frame buildings", J. Struct. Eng., 140(8), A401407. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000839.
  15. Meng, B., Xiong, Yunpeng, Zhong, W.H., Duan, S.C. and Li, H. (2023), "Progressive collapse behaviour of composite substructure with large rectangular beam-web openings", Eng. Struct., 295, 116861. https://doi.org/10.1016/j.engstruct.2023.116861.
  16. Mirtaheri, M. and Abbasi, Z.M. (2016), "Design guides to resist progressive collapse for steel structures", Steel Compos. Struct., 20(2), 357-378. https://doi.org/10.12989/scs.2016.20.2.357.
  17. Qian, K., Weng, Y.H., Zhang, L., Li, Z. and Lan, X. (2023), "Feasibility of two-storey substructures to equivalently investigate behaviour of multi-storey steel frames", J. Constr. Steel. Res., 210, 108088. https://doi.org/10.1016/j.jcsr.2023.108088.
  18. Roverso, G., Baldassino, N., Zandonini, R. and Freddi. F. (2023), "Experimental assessment of an asymmetric steel-concrete frame under a column loss scenario", Eng. Struct., 293, 116610. https://doi.org/10.1016/j.engstruct.2023.116610.
  19. Sagiroglu, S. and Sasani, M. (2014), "Progressive collapse-resisting mechanisms of reinforced concrete structures and effects of initial damage locations", J. Struct Eng., 140(3), 04013073. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000854.
  20. Sasani, M. and Sagiroglu, S. (2010), "Gravity load redistribution and progressive collapse resistance of a 20-story reinforced concrete structure following loss of an interior column", ACI. Struct. J., 107(6), 636-644. https://doi.org/10.1016/j.oceaneng.2010.06.006.
  21. Tan, Z., Zhong, W.H., Meng, B., Duan, S.C. Wang, H. C. Yao, X. Y. and Zheng, Y.H. (2023), "A novel design method for improving collapse resistances of multi-story steel frames with unequal spans using steel braces", Steel Compos. Struct., 47(2), 253-267. https://doi.org/10.12989/scs.2023.47.2.253.
  22. Tan, Z., Zhong, W.H., Tian, L.M., Meng, B., Song, X.Y. and Qiu, S.Z. (2020), "Research on the collapse-resistant performance of composite beam-column substructures using multi-scale models", Struct., 27, 86-101. https://doi.org/10.1016/j.istruc.2020.05.034.
  23. Tan, Z., Zhong, W.H., Tian, L.M., Meng, B., Zheng, Y.H., Song, X.Y. and Duan, S.C. (2021a), "Quantitative assessment of resistant contributions of two-bay beams with unequal spans", Eng. Struct., 242, 112445. https://doi.org/10.1016/j.engstruct.2021.112445.
  24. Tan, Z., Zhong, W.H., Tian, L.M., Zheng, Y.H., Meng, B. and Duan, S.C. (2021b), "Numerical study on collapse-resistant performance of multi-story composite frames under a column removal scenario", J. Build. Eng., 44, 102957. https://doi.org/10.1016/j.jobe.2021.102957.
  25. Vieira, A.D., Triantafyllou, S.P. and Bournas, D.A. (2019), "Strengthening of RC frame subassemblies against progressive collapse using TRM and NSM reinforcement", Eng. Struct., 207, 110002. https://doi.org/10.1016/j.engstruct.2019.110002
  26. Wang, F.L., Yang, J. and Pan, Z.F. (2020), "Progressive collapse behaviour of steel framed substructures with various beam-column connections", Eng. Fail. Anal., 109, 104399. https://doi.org/10.1016/j.engfailanal.2020.104399.
  27. Yang, B. and Tan, K.H. (2013), "Experimental tests of different types of bolted steel beam-column joints under a central-column-removal scenario", Eng. Struct., 54, 112-130. https://doi.org/10.1016/j.engstruct.2013.03.037.
  28. Yu, H.L. and Jeong, D.Y. (2010), "Application of a stress triaxiality dependent fracture criterion in the finite element analysis of unnotched Charpy specimens", Theor. Appl. Fract. Mech., 54(1), 54-62. https://doi.org/10.1016/j.tafmec.2010.06.015.
  29. Yu, J., Tang, J.H., Luo, L.Z. and Fang, Q. (2020), "Effect of boundary conditions on progressive collapse resistance of RC beam-slab assemblies under edge column removal scenario", Eng. Struct., 225, 111272. https://doi.org/10.1016/j.engstruct.2020.111272.
  30. Zhong, W.H., Tan, Z., Tian, L.M., Meng, B., Song, X.Y. and Zheng, Y.H. (2020), "Collapse resistance of composite beam-column assemblies with unequal spans under an internal column-removal scenario", Eng. Struct., 206, 110143. https://doi.org/10.1016/j.engstruct.2019.110143.
  31. Zhong, W.H., Tan, Z., Tian, L.M., Meng, B., Zheng, Y.H. and Duan, S.C. (2021), "Collapse-resistant performance of a single-story frame assembly and multi-story sub-frame under an internal column-removal scenario", Steel Compos. Struct., 41(5), 663-679. https://doi.org/10.12989/scs.2021.41.5.663.