Acknowledgement
The research was supported by the National Natural Science Foundation of China (Nos. 51678476, 51908449). The authors also gratefully acknowledge the financial support provided by the scientific research plan projects of Shaanxi Education Department (Nos. 20JY033, 20JK0713).
References
- Alashker, Y., El-Tawil, S. and Sadek, F. (2010), "Progressive collapse resistance of steel-concrete composite floors", J. Struct. Eng., 136(10), 1187-1196. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000230.
- Alireza, K. and Hossein, O. (2018), "Evaluation of vierendeel peripheral frame as supporting structural element for prevention of progressive collapse", Steel Compos. Struct., 26(5), 549-556. https://doi.org/10.12989/scs.2018.26.5.549.
- Alrubaidi, M., Elsanadedy, H., Abbas, H., Almusallam, T. and Al-Salloum, Y. (2020), "Investigation of different steel intermediate moment frame connections under column-loss scenario", Thin-Walled. Struct., 154, 106875. https://doi.org/10.1016/j.tws.2020.106875.
- ANSI/AISC 358-10 (2014), Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications, Chicago: AISC.
- Dinu, F., Marginean, I. and Dubina, D. (2017), "Experimental testing and numerical modelling of steel moment-frame connections under column loss", Eng. Struct., 151, 861-878. https://doi.org/10.1016/j.engstruct.2017.08.068.
- DoD (Department of Defense) (2013), Design of Buildings to Resist Progressive Collapse. Unified facilities criteria (UFC) 4-023-03. Washington D C: DoD.
- Forquin, P. and Chen, W. (2017), "An experimental investigation of the progressive collapse resistance of beam-column RC sub-assemblages", Constr. Build. Mater., 152, 1068-1084. https://doi.org/10.1016/j.conbuildmat.2017.05.179.
- Fu, Q.N. and Tan, K.H. (2019), "Numerical study on steel-concrete composite floor systems under corner column removal scenario", Struct., 21, 33-44. https://doi.org/10.1016/j.istruc.2019.06.003.
- GB 50017-2017 (2017), Standard for Design of Steel Structures. China Architecture & Building Press, Beijing, China.
- Izzuddin, B.A., Vlassis, A.G., Elghazouli, A.Y. and Nethercot, D.A. (2008), "Progressive collapse of multi-storey buildings due to sudden column loss - Part I: Simplified assessment framework", Eng. Struct., 30(5), 1308-1318. https://doi.org/10.1016/j.engstruct.2007.07.011.
- Kiakojouri, F., Valerio, D.B., Chiaia, B. and Sheidaii, M.R. (2022), "Strengthening and retrofitting techniques to mitigate progressive collapse: A critical review and future research agenda", Eng. Struct., 262, 114274. https://doi.org/10.1016/j.engstruct.2022.114274.
- Kim, S., Lee, C.H. and Lee, K. (2015), "Effects of floor slab on progressive collapse resistance of steel moment frames", J. Constr. Steel. Res., 110, 182-190. https://doi.org/10.1016/j.jcsr.2015.02.013.
- Li, G.Q., Li, L.L., Jiang, B.H. and Lu, Y. (2018), "Experimental study on progressive collapse resistance of steel frames under a sudden column removal scenario", J. Constr. Steel. Res., 147, 1-15. https://doi.org/10.1016/j.jcsr.2018.03.023.
- Li, H.H. and El-Tawil, S. (2014), "Three-dimensional effects and collapse resistance mechanisms in steel frame buildings", J. Struct. Eng., 140(8), A401407. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000839.
- Meng, B., Xiong, Yunpeng, Zhong, W.H., Duan, S.C. and Li, H. (2023), "Progressive collapse behaviour of composite substructure with large rectangular beam-web openings", Eng. Struct., 295, 116861. https://doi.org/10.1016/j.engstruct.2023.116861.
- Mirtaheri, M. and Abbasi, Z.M. (2016), "Design guides to resist progressive collapse for steel structures", Steel Compos. Struct., 20(2), 357-378. https://doi.org/10.12989/scs.2016.20.2.357.
- Qian, K., Weng, Y.H., Zhang, L., Li, Z. and Lan, X. (2023), "Feasibility of two-storey substructures to equivalently investigate behaviour of multi-storey steel frames", J. Constr. Steel. Res., 210, 108088. https://doi.org/10.1016/j.jcsr.2023.108088.
- Roverso, G., Baldassino, N., Zandonini, R. and Freddi. F. (2023), "Experimental assessment of an asymmetric steel-concrete frame under a column loss scenario", Eng. Struct., 293, 116610. https://doi.org/10.1016/j.engstruct.2023.116610.
- Sagiroglu, S. and Sasani, M. (2014), "Progressive collapse-resisting mechanisms of reinforced concrete structures and effects of initial damage locations", J. Struct Eng., 140(3), 04013073. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000854.
- Sasani, M. and Sagiroglu, S. (2010), "Gravity load redistribution and progressive collapse resistance of a 20-story reinforced concrete structure following loss of an interior column", ACI. Struct. J., 107(6), 636-644. https://doi.org/10.1016/j.oceaneng.2010.06.006.
- Tan, Z., Zhong, W.H., Meng, B., Duan, S.C. Wang, H. C. Yao, X. Y. and Zheng, Y.H. (2023), "A novel design method for improving collapse resistances of multi-story steel frames with unequal spans using steel braces", Steel Compos. Struct., 47(2), 253-267. https://doi.org/10.12989/scs.2023.47.2.253.
- Tan, Z., Zhong, W.H., Tian, L.M., Meng, B., Song, X.Y. and Qiu, S.Z. (2020), "Research on the collapse-resistant performance of composite beam-column substructures using multi-scale models", Struct., 27, 86-101. https://doi.org/10.1016/j.istruc.2020.05.034.
- Tan, Z., Zhong, W.H., Tian, L.M., Meng, B., Zheng, Y.H., Song, X.Y. and Duan, S.C. (2021a), "Quantitative assessment of resistant contributions of two-bay beams with unequal spans", Eng. Struct., 242, 112445. https://doi.org/10.1016/j.engstruct.2021.112445.
- Tan, Z., Zhong, W.H., Tian, L.M., Zheng, Y.H., Meng, B. and Duan, S.C. (2021b), "Numerical study on collapse-resistant performance of multi-story composite frames under a column removal scenario", J. Build. Eng., 44, 102957. https://doi.org/10.1016/j.jobe.2021.102957.
- Vieira, A.D., Triantafyllou, S.P. and Bournas, D.A. (2019), "Strengthening of RC frame subassemblies against progressive collapse using TRM and NSM reinforcement", Eng. Struct., 207, 110002. https://doi.org/10.1016/j.engstruct.2019.110002
- Wang, F.L., Yang, J. and Pan, Z.F. (2020), "Progressive collapse behaviour of steel framed substructures with various beam-column connections", Eng. Fail. Anal., 109, 104399. https://doi.org/10.1016/j.engfailanal.2020.104399.
- Yang, B. and Tan, K.H. (2013), "Experimental tests of different types of bolted steel beam-column joints under a central-column-removal scenario", Eng. Struct., 54, 112-130. https://doi.org/10.1016/j.engstruct.2013.03.037.
- Yu, H.L. and Jeong, D.Y. (2010), "Application of a stress triaxiality dependent fracture criterion in the finite element analysis of unnotched Charpy specimens", Theor. Appl. Fract. Mech., 54(1), 54-62. https://doi.org/10.1016/j.tafmec.2010.06.015.
- Yu, J., Tang, J.H., Luo, L.Z. and Fang, Q. (2020), "Effect of boundary conditions on progressive collapse resistance of RC beam-slab assemblies under edge column removal scenario", Eng. Struct., 225, 111272. https://doi.org/10.1016/j.engstruct.2020.111272.
- Zhong, W.H., Tan, Z., Tian, L.M., Meng, B., Song, X.Y. and Zheng, Y.H. (2020), "Collapse resistance of composite beam-column assemblies with unequal spans under an internal column-removal scenario", Eng. Struct., 206, 110143. https://doi.org/10.1016/j.engstruct.2019.110143.
- Zhong, W.H., Tan, Z., Tian, L.M., Meng, B., Zheng, Y.H. and Duan, S.C. (2021), "Collapse-resistant performance of a single-story frame assembly and multi-story sub-frame under an internal column-removal scenario", Steel Compos. Struct., 41(5), 663-679. https://doi.org/10.12989/scs.2021.41.5.663.