Acknowledgement
The authors are grateful for the research support received from the National Natural Science Foundation of China (51978382) and the China 973 Program (2014CB047003).
References
- Alonso, E., Romero, E. and Ortega, E. (2016), "Yielding of rockfill in relative humidity-controlled triaxial experiments", Acta Geotechnica, 11, 455-477. https://doi.org/10.1007/s11440-016-0437-9.
- Alonso, E., Tapias, M. and Gili, J. (2012), "Scale effects in rockfill behavior", Geotechnique Lett., 2, 155-160. https://doi.org/10.1680/geolett.12.00025.
- Anhdan, L., Tatsuoka, F. and Koseki, J. (2006), "Viscous effects on the stress-strain behavior of gravelly soil in drained triaxial compression", ASTM Geotech. Test J., 29(4), 330-340. https://doi.org/10.1520/GTJ12720.
- Behnia, D., Ahangari, K., Noorzad, A. and Moeinossadat, S.R. (2013), "Predicting crest settlement in concrete face rockfill dams using adaptive neuro-fuzzy inference system and gene expression programming intelligent methods", J. Zhejiang Univ. Sci. A, 14(8), 589-602. https://doi.org/10.1631/jzus.A1200301.
- Calvello, M. and Finno, R.J. (2004), "Selecting parameters to optimize in model calibration by inverse analysis", Comput. Geotech., 31(5), 410-424. https://doi.org/10.1016/j.compgeo.2004.03.004.
- Canizal, J., Castro, J., Costa, A.D., Sagaseta, C. and Sola, P. (2015), "High rockfill embankment for the extension of an airport main runway", Proceedings of the 15th Pan-American Conference on Soil Mechanics and Geotechnical Engineering, Buenos Aires, Argentina, December. https://doi.org/10.3233/978-1-61499-603-3-188.
- Charles, J.A. (2008), "The engineering behavior of fill materials, the use, misuse and disuse of case histories", Geotechnique, 58(7), 541-570. https://doi.org/10.1680/geot.2008.58.7.541.
- Ducan, J. and Chang, C. (1970), "Nonlinear analysis of stress and strain in soils", J. Soil Mech. Found. Division, 96(5), 1629-1652. https://doi.org/10.1061/JSFEAQ.0001458.
- Finno, R.J. and Calvello, M. (2005), "Supported excavations: observational method and inverse modeling", J. Geotech. Geoenviron. Eng., 131(7), 826-836. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:7(826).
- Frossard, E., Hu, W., Dano, C. and Hicher, P. (2012), "Rockfill shear strength evaluation: a rational method based on size effects", Geotechnique, 62(5), 415-427. https://doi.org/10.1680/geot.10.P.079.
- Guan, Z., Jiang, Y., Tanabashi, Y. and Huang, H. (2008), "A new rheological model and its application in mountain tunneling", Tunn. Undergr. Sp. Technol., 23(3), 292-299. https://doi.org/10.1016/j.tust.2007.06.003.
- Hong, J. and Xu, M. (2021), "Numerical investigation of the time size effect of high rockfill geostructures", Transport. Geotech., 30, 100613. https://doi.org/10.1016/j.trgeo.2021.100613.
- Hu, W., Dano, C., Hicher, P.Y., Touzo, J.Y.L., Derkx, F. and Merliot, E. (2011), "Effect of sample size on the behavior of granular materials", ASTM Geotech. Test. J., 34(3), 186-197. https://doi.org/10.1520/GTJ103095.
- Itasca. (2005), User's guide for FLAC version 5.0.
- Javdanian, H. and Pradhan, B. (2019), "Assessment of earthquake-induced slope deformation of earth dams using soft computing techniques", Landslides, 16(1), 91-103. https://doi.org/10.1007/s10346-018-1078-x.
- Javdanian, H., Zarif Sanayei, H.R. and Shakarami, L. (2020), "A regression-based approach to the prediction of crest settlement of embankment dams under earthquake shaking", Scientia Iranica, 27(2), 671-681. https://doi.org/10.24200/sci.2018.50483.1716.
- Javdanian, H., Zarei, M. and Shams, G. (2023), "Estimating seismic slope displacements of embankment dams using statistical analysis and numerical modeling", Model. Earth Syst. Environ., 9, 389-396. https://doi.org/10.1007/s40808-022-01505-4.
- Kermani, M., Konrad, J.M. and Smith, M. (2017), "An empirical method for predicting post-construction settlement of concrete face rockfill dams", Can. Geotech. J., 54(6), 755-767. https://doi.org/10.1139/cgj-2016-0193.
- Ledesma, A., Gens, A. and Alonso, E.E. (1996), "Estimation of parameters in geotechnical back analysis-I. Maximum likelihood approach", Comput. Geotech., 18(1), 1-27. https://doi.org/10.1016/0266-352X(95)00021-2.
- Lee, D.M. (1992), The angles of friction of granular fills, PhD dissertation, Canbridge University.
- Mcdowell, G.R. and Bolton, M.D. (1998), "On the micromechanics of crushable aggregates", Geotechnique, 48(5), 667-679. https://doi.org/10.1061/JSFEAQ.0000958.
- Oyejola, B.A. and Nwanya, J.C. (2015), "Selecting the right central composite design", Int. J. Stat. Appl., 5(1), 21-30. https://doi:10.5923/j.statistics.20150501.04.
- Nagahara, H., Fujiyama,T., Ishiguro, T. and Ohta, H. (2004), "FEM analysis of high airport embankment with horizontal drains", Geotext. Geomembranes, 22(2), 49-62. https://doi.org/10.1016/S0266-1144(03)00051-7.
- Nasiri, F., Javdanian, H. and Heidari, A. (2020), "Seismic response analysis of embankment dams under decomposed earthquakes", Geomech. Eng., 21(1), 35-51. https://doi.org/10.12989/gae.2020.21.1.035.
- Park, D. and Park, E.S. (2015), "Inverse parameter fitting of tunnels using a response surface approach", Int. J. Rock Mech. Min. Sci., 77, 11-18. https://doi.org/10.1016/j.ijrmms.2015.03.026.
- Pichler, B., Lackner, R. and Mang, H.A. (2003), "Back analysis of model parameters in geotechnical engineering by means of soft computing", Int. J. Numer. Method. Eng., 57(14), 1943-1978. https://doi.org/10.1002/nme.740.
- Qin, X., Gu, C., Shao, C., Chen, Y., Valleji, L. and Zhao, E. (2020), "Safety evaluation with observational data and numerical analysis of Langyashan reinforced concrete face rockfill dam", Bull. Eng. Geol. Environ., 79, 3497-3515. https://doi.org/10.1007/s10064-020-01790-2.
- Rahmania, H. and Panah A.K. (2020), "Effect of particle size and saturation conditions on the breakage factor of weak rockfill materials under one-dimensional compression testing", Geomech. Eng., 21(4), 315-326. https://doi.org/10.12989/gae.2020.21.4.315.
- Sarabia, L.A. and Ortiz, M.C. (2020), Response Surface Methodology, Comprehensive Chemometrics. https://doi.org/10.1016/B978-044452701-1.00083-1.
- Shakarami, L., Javdanian, H., Zarif Sanayei, H.R. and Shams, G. (2019), "Numerical investigation of seismically induced crest settlement of earth dams", Model. Earth Syst. Environ., 5, 1231-1238. https://doi.org/10.1007/s40808-019-00624-9.
- Song, E., Zheng, T. and Kong, Y. (2018), "Tentative investigation of structure size effect of high-filled geotechnical structures", Proceedings of the China-Europe Conference on Geotechnical Engineering, 1726-1729. https://doi.org/10.1007/978-3-319- 97115-5_179.
- Soriano, A. and Sanchez, F.J. (1999), "Settlements of railroad high embankments", Proceedings of the 12th European Conference on Soil Mechanics and Geotechnical Engineering, 1885-1890.
- Sukkarak, R., Pramthawee, P., Jongpradist, P., Kongkitkul, W. and Jamsawang, P. (2018), "Deformation analysis of high CFRD considering the scaling effects", Geomech. Eng., 14(3), 211-224. https://doi.org/10.12989/gae.2018.14.3.211.
- Tapias, M., Alonso, E.E. and Gili, J.A. (2015), "A particle model for rockfill behavior", Geotechnique, 65(12), 975-994. https://doi.org/10.1680/jgeot.14.P.170.
- Wang, Z., Li, Y. and Shen, R.F. (2007), "Correction of soil parameters in calculation of embankment settlement using a BP network back-analysis model", Eng. Geol., 91(2-4), 168-177. https://doi.org/10.1016/j.enggeo.2007.01.007.
- Xu, M., Song, E. and Cao, G. (2009), "Compressibility of broken rock-fine grain soil mixture", Geomech. Eng., 1(2). https://doi.org/10.12989/gae.2009.1.2.169.
- Xu, M., Song, E. and Chen, J. (2012), "A large triaxial investigation of the stress-path-dependent behavior of compacted rockfills", Acta Geotechnica, 7(3), 167-175. https://doi.org/10.1007/s11440-012-0160-0.
- Xu, M., Song, E. and Jin, D. (2017), "A strain hardening model for the stress-path-dependent shear behavior of rockfills", Geomech. Eng., 13(5), 743-756. https://doi.org/10.12989/gae.2017.13.5.743.
- Xu, M., Jin, D., Song, E. and Shen, D. (2018), "A rheological model to simulate the shear creep behavior of rockfills considering the influence of stress states", Acta Geotechnica, 13(6), 1313-1327. https://doi.org/10.1007/s11440-018-0716-8.
- Xu, M., Jin D., Song, E., Shen, Z., Yang, Z. and Fu, J. (2019), "Full-scale creep test and back-analysis of the long-term settlement of heavy-loaded shallow foundations on a high rockfill embankment", Comput. Geotech., 115, 103156. https://doi.org/10.1016/j.compgeo.2019.103156.
- Yao, Y.P., Qi, S.J., Che, L.W., Chen, J., Han, L.M. and Ma, X.Y. (2018), "Postconstruction settlement prediction of high embankment of silty clay at Chengde Airport based on one-dimensional creep analytical method: case study", Int. J. Geomech., 18(7), 05018004. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001191.
- Yao, Y., Huang, J., Wang, N., Luo, T. and Han, L. (2020), "Prediction method of creep settlement considering abrupt factors", Transport. Geotech., 22, 100304. https://doi.org/10.1016/j.trgeo.2019.100304.
- Zhao, H., Ru, Z. and Yin, S. (2015), "A practical indirect back analysis approach for geomechanical parameters identification", Mar. Georesour. Geotec., 33(3), 212-221. https://doi.org/10.1080/1064119X.2013.836258.
- Zhou, W., Li, S. L., Ma, G., Chang, X.L., Cheng, Y.G. and Ma, X. (2016), "Assessment of the crest cracks of the Pubugou rockfill dam based on parameters back analysis", Geomech. Eng., 11(4), 571-585. https://doi.org/10.12989/gae.2016.11.4.571.
- Zhou, X., Ma, G. and Zhang, Y. (2019), "Grain size and time effect on the deformation of rockfill dams: a case study on the Shuibuya CFRD", Geotechnique, 69(7), 606-619. https://doi.org/10.1680/jgeot.17.P.299.
- Zhou M., Shadabfar M., Huang, H., Leung Y.F. and Uchida S. (2022), "Efficient back analysis of multiphysics processes of gas hydrate production through artificial intelligence", Fuel, 323, 124162. https://doi.org/10.1016/j.fuel.2022.124162.