DOI QR코드

DOI QR Code

Prediction of the long-term deformation of high rockfill geostructures using a hybrid back-analysis method

  • Ming Xu (Department of Civil Engineering, Tsinghua University) ;
  • Dehai Jin (Department of Civil Engineering, Tsinghua University)
  • Received : 2023.03.09
  • Accepted : 2023.12.05
  • Published : 2024.01.10

Abstract

It is important to make reasonable prediction about the long-term deformation of high rockfill geostructures. However, the deformation is usually underestimated using the rockfill parameters obtained from laboratory tests due to different size effects, which make it necessary to identify parameters from in-situ monitoring data. This paper proposes a novel hybrid back-analysis method with a modified objective function defined for the time-dependent back-analysis problem. The method consists of two stages. In the first stage, an improved weighted average method is proposed to quickly narrow the search region; while in the second stage, an adaptive response surface method is proposed to iteratively search for the satisfactory solution, with a technique that can adaptively consider the translation, contraction or expansion of the exploration region. The accuracy and computational efficiency of the proposed hybrid back-analysis method is demonstrated by back-analyzing the long-term deformation of two high embankments constructed for airport runways, with the rockfills being modeled by a rheological model considering the influence of stress states on the creep behavior.

Keywords

Acknowledgement

The authors are grateful for the research support received from the National Natural Science Foundation of China (51978382) and the China 973 Program (2014CB047003).

References

  1. Alonso, E., Romero, E. and Ortega, E. (2016), "Yielding of rockfill in relative humidity-controlled triaxial experiments", Acta Geotechnica, 11, 455-477. https://doi.org/10.1007/s11440-016-0437-9.
  2. Alonso, E., Tapias, M. and Gili, J. (2012), "Scale effects in rockfill behavior", Geotechnique Lett., 2, 155-160. https://doi.org/10.1680/geolett.12.00025.
  3. Anhdan, L., Tatsuoka, F. and Koseki, J. (2006), "Viscous effects on the stress-strain behavior of gravelly soil in drained triaxial compression", ASTM Geotech. Test J., 29(4), 330-340. https://doi.org/10.1520/GTJ12720.
  4. Behnia, D., Ahangari, K., Noorzad, A. and Moeinossadat, S.R. (2013), "Predicting crest settlement in concrete face rockfill dams using adaptive neuro-fuzzy inference system and gene expression programming intelligent methods", J. Zhejiang Univ. Sci. A, 14(8), 589-602. https://doi.org/10.1631/jzus.A1200301.
  5. Calvello, M. and Finno, R.J. (2004), "Selecting parameters to optimize in model calibration by inverse analysis", Comput. Geotech., 31(5), 410-424. https://doi.org/10.1016/j.compgeo.2004.03.004.
  6. Canizal, J., Castro, J., Costa, A.D., Sagaseta, C. and Sola, P. (2015), "High rockfill embankment for the extension of an airport main runway", Proceedings of the 15th Pan-American Conference on Soil Mechanics and Geotechnical Engineering, Buenos Aires, Argentina, December. https://doi.org/10.3233/978-1-61499-603-3-188.
  7. Charles, J.A. (2008), "The engineering behavior of fill materials, the use, misuse and disuse of case histories", Geotechnique, 58(7), 541-570. https://doi.org/10.1680/geot.2008.58.7.541.
  8. Ducan, J. and Chang, C. (1970), "Nonlinear analysis of stress and strain in soils", J. Soil Mech. Found. Division, 96(5), 1629-1652. https://doi.org/10.1061/JSFEAQ.0001458.
  9. Finno, R.J. and Calvello, M. (2005), "Supported excavations: observational method and inverse modeling", J. Geotech. Geoenviron. Eng., 131(7), 826-836. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:7(826).
  10. Frossard, E., Hu, W., Dano, C. and Hicher, P. (2012), "Rockfill shear strength evaluation: a rational method based on size effects", Geotechnique, 62(5), 415-427. https://doi.org/10.1680/geot.10.P.079.
  11. Guan, Z., Jiang, Y., Tanabashi, Y. and Huang, H. (2008), "A new rheological model and its application in mountain tunneling", Tunn. Undergr. Sp. Technol., 23(3), 292-299. https://doi.org/10.1016/j.tust.2007.06.003.
  12. Hong, J. and Xu, M. (2021), "Numerical investigation of the time size effect of high rockfill geostructures", Transport. Geotech., 30, 100613. https://doi.org/10.1016/j.trgeo.2021.100613.
  13. Hu, W., Dano, C., Hicher, P.Y., Touzo, J.Y.L., Derkx, F. and Merliot, E. (2011), "Effect of sample size on the behavior of granular materials", ASTM Geotech. Test. J., 34(3), 186-197. https://doi.org/10.1520/GTJ103095.
  14. Itasca. (2005), User's guide for FLAC version 5.0.
  15. Javdanian, H. and Pradhan, B. (2019), "Assessment of earthquake-induced slope deformation of earth dams using soft computing techniques", Landslides, 16(1), 91-103. https://doi.org/10.1007/s10346-018-1078-x.
  16. Javdanian, H., Zarif Sanayei, H.R. and Shakarami, L. (2020), "A regression-based approach to the prediction of crest settlement of embankment dams under earthquake shaking", Scientia Iranica, 27(2), 671-681. https://doi.org/10.24200/sci.2018.50483.1716.
  17. Javdanian, H., Zarei, M. and Shams, G. (2023), "Estimating seismic slope displacements of embankment dams using statistical analysis and numerical modeling", Model. Earth Syst. Environ., 9, 389-396. https://doi.org/10.1007/s40808-022-01505-4.
  18. Kermani, M., Konrad, J.M. and Smith, M. (2017), "An empirical method for predicting post-construction settlement of concrete face rockfill dams", Can. Geotech. J., 54(6), 755-767. https://doi.org/10.1139/cgj-2016-0193.
  19. Ledesma, A., Gens, A. and Alonso, E.E. (1996), "Estimation of parameters in geotechnical back analysis-I. Maximum likelihood approach", Comput. Geotech., 18(1), 1-27. https://doi.org/10.1016/0266-352X(95)00021-2.
  20. Lee, D.M. (1992), The angles of friction of granular fills, PhD dissertation, Canbridge University.
  21. Mcdowell, G.R. and Bolton, M.D. (1998), "On the micromechanics of crushable aggregates", Geotechnique, 48(5), 667-679. https://doi.org/10.1061/JSFEAQ.0000958.
  22. Oyejola, B.A. and Nwanya, J.C. (2015), "Selecting the right central composite design", Int. J. Stat. Appl., 5(1), 21-30. https://doi:10.5923/j.statistics.20150501.04.
  23. Nagahara, H., Fujiyama,T., Ishiguro, T. and Ohta, H. (2004), "FEM analysis of high airport embankment with horizontal drains", Geotext. Geomembranes, 22(2), 49-62. https://doi.org/10.1016/S0266-1144(03)00051-7.
  24. Nasiri, F., Javdanian, H. and Heidari, A. (2020), "Seismic response analysis of embankment dams under decomposed earthquakes", Geomech. Eng., 21(1), 35-51. https://doi.org/10.12989/gae.2020.21.1.035.
  25. Park, D. and Park, E.S. (2015), "Inverse parameter fitting of tunnels using a response surface approach", Int. J. Rock Mech. Min. Sci., 77, 11-18. https://doi.org/10.1016/j.ijrmms.2015.03.026.
  26. Pichler, B., Lackner, R. and Mang, H.A. (2003), "Back analysis of model parameters in geotechnical engineering by means of soft computing", Int. J. Numer. Method. Eng., 57(14), 1943-1978. https://doi.org/10.1002/nme.740.
  27. Qin, X., Gu, C., Shao, C., Chen, Y., Valleji, L. and Zhao, E. (2020), "Safety evaluation with observational data and numerical analysis of Langyashan reinforced concrete face rockfill dam", Bull. Eng. Geol. Environ., 79, 3497-3515. https://doi.org/10.1007/s10064-020-01790-2.
  28. Rahmania, H. and Panah A.K. (2020), "Effect of particle size and saturation conditions on the breakage factor of weak rockfill materials under one-dimensional compression testing", Geomech. Eng., 21(4), 315-326. https://doi.org/10.12989/gae.2020.21.4.315.
  29. Sarabia, L.A. and Ortiz, M.C. (2020), Response Surface Methodology, Comprehensive Chemometrics. https://doi.org/10.1016/B978-044452701-1.00083-1.
  30. Shakarami, L., Javdanian, H., Zarif Sanayei, H.R. and Shams, G. (2019), "Numerical investigation of seismically induced crest settlement of earth dams", Model. Earth Syst. Environ., 5, 1231-1238. https://doi.org/10.1007/s40808-019-00624-9.
  31. Song, E., Zheng, T. and Kong, Y. (2018), "Tentative investigation of structure size effect of high-filled geotechnical structures", Proceedings of the China-Europe Conference on Geotechnical Engineering, 1726-1729. https://doi.org/10.1007/978-3-319- 97115-5_179.
  32. Soriano, A. and Sanchez, F.J. (1999), "Settlements of railroad high embankments", Proceedings of the 12th European Conference on Soil Mechanics and Geotechnical Engineering, 1885-1890.
  33. Sukkarak, R., Pramthawee, P., Jongpradist, P., Kongkitkul, W. and Jamsawang, P. (2018), "Deformation analysis of high CFRD considering the scaling effects", Geomech. Eng., 14(3), 211-224. https://doi.org/10.12989/gae.2018.14.3.211.
  34. Tapias, M., Alonso, E.E. and Gili, J.A. (2015), "A particle model for rockfill behavior", Geotechnique, 65(12), 975-994. https://doi.org/10.1680/jgeot.14.P.170.
  35. Wang, Z., Li, Y. and Shen, R.F. (2007), "Correction of soil parameters in calculation of embankment settlement using a BP network back-analysis model", Eng. Geol., 91(2-4), 168-177. https://doi.org/10.1016/j.enggeo.2007.01.007.
  36. Xu, M., Song, E. and Cao, G. (2009), "Compressibility of broken rock-fine grain soil mixture", Geomech. Eng., 1(2). https://doi.org/10.12989/gae.2009.1.2.169.
  37. Xu, M., Song, E. and Chen, J. (2012), "A large triaxial investigation of the stress-path-dependent behavior of compacted rockfills", Acta Geotechnica, 7(3), 167-175. https://doi.org/10.1007/s11440-012-0160-0.
  38. Xu, M., Song, E. and Jin, D. (2017), "A strain hardening model for the stress-path-dependent shear behavior of rockfills", Geomech. Eng., 13(5), 743-756. https://doi.org/10.12989/gae.2017.13.5.743.
  39. Xu, M., Jin, D., Song, E. and Shen, D. (2018), "A rheological model to simulate the shear creep behavior of rockfills considering the influence of stress states", Acta Geotechnica, 13(6), 1313-1327. https://doi.org/10.1007/s11440-018-0716-8.
  40. Xu, M., Jin D., Song, E., Shen, Z., Yang, Z. and Fu, J. (2019), "Full-scale creep test and back-analysis of the long-term settlement of heavy-loaded shallow foundations on a high rockfill embankment", Comput. Geotech., 115, 103156. https://doi.org/10.1016/j.compgeo.2019.103156.
  41. Yao, Y.P., Qi, S.J., Che, L.W., Chen, J., Han, L.M. and Ma, X.Y. (2018), "Postconstruction settlement prediction of high embankment of silty clay at Chengde Airport based on one-dimensional creep analytical method: case study", Int. J. Geomech., 18(7), 05018004. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001191.
  42. Yao, Y., Huang, J., Wang, N., Luo, T. and Han, L. (2020), "Prediction method of creep settlement considering abrupt factors", Transport. Geotech., 22, 100304. https://doi.org/10.1016/j.trgeo.2019.100304.
  43. Zhao, H., Ru, Z. and Yin, S. (2015), "A practical indirect back analysis approach for geomechanical parameters identification", Mar. Georesour. Geotec., 33(3), 212-221. https://doi.org/10.1080/1064119X.2013.836258.
  44. Zhou, W., Li, S. L., Ma, G., Chang, X.L., Cheng, Y.G. and Ma, X. (2016), "Assessment of the crest cracks of the Pubugou rockfill dam based on parameters back analysis", Geomech. Eng., 11(4), 571-585. https://doi.org/10.12989/gae.2016.11.4.571.
  45. Zhou, X., Ma, G. and Zhang, Y. (2019), "Grain size and time effect on the deformation of rockfill dams: a case study on the Shuibuya CFRD", Geotechnique, 69(7), 606-619. https://doi.org/10.1680/jgeot.17.P.299.
  46. Zhou M., Shadabfar M., Huang, H., Leung Y.F. and Uchida S. (2022), "Efficient back analysis of multiphysics processes of gas hydrate production through artificial intelligence", Fuel, 323, 124162. https://doi.org/10.1016/j.fuel.2022.124162.