DOI QR코드

DOI QR Code

The tunnel model tests of material development in different surrounding rock grades and the force laws in whole excavation-support processes

  • Jian Zhou (Department of Civil Engineering, Hangzhou City University) ;
  • Zhi Ding (Department of Civil Engineering, Hangzhou City University) ;
  • Jinkun Huang (China MCC17 Group Co., Ltd) ;
  • Xinan Yang (The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University) ;
  • Mingjie Ma (The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University)
  • 투고 : 2023.04.07
  • 심사 : 2023.11.29
  • 발행 : 2024.01.10

초록

Currently, composite lining mountain tunnels in China are generally classified based on the [BQ] method for the surrounding rock grade. Increasingly, tunnel field construction is replicated indoors for scale down model tests. However, the development of analogous materials for model tests of composite lining tunnels with different surrounding rock grades is still unclear. In this study, typical Class III and V surrounding rock analogous materials and corresponding composite lining support materials were developed. The whole processes of excavation-support dynamics of the mountain tunnels were simulated. Data on the variation of deformations, contact pressures and strains on the surrounding rock were obtained. Finally, a comparative analysis between model tests and numerical simulations was performed to verify the rationality of analogous material development. The following useful conclusions were obtained by analyzing the data from the tests. The main analogous materials of Class III surrounding rock are barite powder, high-strength gypsum and quartz sand with fly ash, quartz sand, anhydrous ethanol and rosin for Class V surrounding rock. Analogous materials for rockbolts, steel arches are replaced by aluminum bar and iron bar respectively with both shotcrete and secondary lining corresponding to gypsum and water. In addition, load release rate of Class V surrounding rock should be less than Class III surrounding rock. The fenestration level had large influence on the load sharing ratio of the secondary lining, with a difference of more than 30%, while the influence of the support time was smaller. The Sharing ratios of secondary lining in Class III surrounding rock do not exceed 12%, while those of Class V surrounding rock exceed 40%. The overall difference between the results of model tests and numerical simulations is small, which verifies the feasibility of similar material development in this study.

키워드

과제정보

This study is sponsored by the Scientific Research Project of Zhejiang Provincial Department of Education (Y202351526) and Scientific Research Project of Zhejiang Provincial Transportation Department (2021050). The financial supports are greatly appreciated...

참고문헌

  1. Ahmed, M. and Iskander, M. (2012), "Evaluation of tunnel face stability by transparent soil models", Tunn. Undergr. Sp. Tech., 7(1), 101-110. https://doi.org/10.1016/j.tust.2011.08.001.
  2. Berthoz, N., Branque, D., Wong, H. and Subrin, D. (2013), "Stress measurement in partially saturated soils and its application to physical modeling of tunnel excavation", Can. Geotech. J., 50(10), 1077-1087. https://doi.org/10.1139/cgj-2013-0154.
  3. Bro, A. (1991), "Three-dimensional styrofoam models of blocky rock masses", Int. J. Rock. Mech. Min. Sci., 28(1), 109-113. https://doi.org/10.1016/0148-9062(91)93240-7.
  4. Chen, X.G. (2011), "Study on forming mechanism and anchorage characteristics of zonal disintegration in rock mass of deep tunnel under high geostress", Shandong University, Jinan, China.
  5. Dai, C., He, C., Liu, C.K and Guo, W.Q. (2021), "Model test study on influence of excavation methods on stability of surrounding rocks of the soft rock tunnel in high geostress field", Modern Tunn. Tech., 57(4), 141-149. https://doi.org/10.13807/j.cnki.mtt.2020.04.019.
  6. Fumagalli, E. (1973), "Statical and geomechanical models", Springer Science and Business Media.
  7. Ghobadian, R., Shekari, H. and Koochak, P. (2019), "Model test and numerical investigation of the effect of the impervious layer's slope on seepage characteristics under hydraulic structures", Water. Sa. 45(1), 141-148. https://doi.org/10.4314/wsa.v45i1.16.
  8. Ghiasi, V., Ghiasi, S. and Prasad, A. (2012), "Evaluation of tunnels under squeezing rock condition", J. Eng. Des. Technol., 10(2), 168-179. https://doi.org/10.1108/17260531211241167.
  9. Ghiasi, V. and Koushki, M. (2020), "Numerical and artificial neural network analyses of ground surface settlement of tunnel in saturated soil", SN. Appl. Sci., 2(5), 939. https://doi.org/10.1007/s42452-020-2742-z.
  10. Ghiasi, V. and Mozafari, V. (2018), "Seismic response of buried pipes to microtunnelling method under earthquake loads", Soil Dyn. Earthq. Eng., 113, 193-201. https://doi.org/10.1016/j.soildyn.2018.05.020.
  11. Ghiasi, V., Omar, H., Kim Huat, B.B., Muniandi, R., Zainuddin, B. and Yusof, M. (2011), "Risk management overview of tunnels using numerical modeling", J. Eng. Des. Technol. 9(1), 110-124. https://doi.org/doi/10.1108/17260531111121495.
  12. Hendron, A.J., Paul, E. and Aiyer, A.K. (1972), "Geomechanical model study of the behavior of underground openings in rock subjected to static loads (report 3)-tests on lined openings in jointed and intact rock", Report.
  13. Heuer, R.E. and Hendron, A.J. (1971), "Geomechanical model study of the behavior of underground openings in rock subjected to static loads (report 2)-tests on unlined openings in intact rock", Report.
  14. Jeon, S., Kim, J., Seo, Y. and Hong, C. (2004), "Effect of a fault and weak plane on the stability of a tunnel in rock-a scaled model test and numerical analysis", Int. J. Rock. Mech. Min. Sci., 41(3), 658-663. https://doi.org/10.1016/j.ijrmms.2003.12.021.
  15. Kwon, O.Y., Shin, J.H., Cho, J.W. and Choi, M.G. (2006), "Heading failure modes during underground excavation", Tunn. Undergr. Sp. Tech., 21(3-4), 442. https://doi.org/10.1016/j.tust.2005.12.082.
  16. Lee, Y.J. and Bassett, R.H. (2006), "Physical test using close range photogrammetry and numerical analysis for deep wall-soiltunnel interaction", Physical Modelling in Geotechnics, 6th ICPMG'06 - Proceedings of the 6th International Conference on Physical Modelling in Geotechnics, Hong Kong, China.
  17. Li, L.P., Li, S.C., Zhao, Y., Li, S.J., Wang, H.P., Liu, Q., Zhao, Y. and Yuan, X.S. (2012), "3D Geomechanical model for progressive filure progress of weak broken surrounding rock section tunnel", Chi. J. Rock. Mech. Eng., 31(3), 550-560. https://doi.org/10.3969/j.issn.1000-6915.2012.03.013.
  18. Li, Y.J., Luo, R., Zhang, Q.H., Xiao, G.Q., Zhou, L.M. and Zhang, Y.T. (2017), "Model test and numerical simulation on the bearing mechanism of tunnel-type anchorage", Geomech. Eng., 12(1), 139-160. https://doi.org/10.12989/gae.2017.12.1.139.
  19. Liu, X.R., Suliman, L., Zhou, X.H., Zhang, J.L., Xu, B., Xiong, F. and Abd Elmageed, A. (2022), "The difference in the slope supported system when excavating twin tunnels: Model test and numerical simulation", Geomech. Eng., 31(1), 15-30. https://doi.org/10.12989/gae.2022.31.1.015.
  20. Meguid, M.A., Saada, O., Nunes, M.A. and Mattar, J. (2008), "Physical modeling of tunnels in soft ground: a review", Tunn. Undergr. Space. Tech., 23(2), 185-198. https://doi.org/10.1016/j.tust.2007.02.003.
  21. Messerli, J. and Anagnostou, G. (2010), "Experimental study into tunnel face collapse in sand", Physical Modelling in Geotechnics - Proceedings of the 7th International Conference on Physical Modelling in Geotechnics, CRC Press.
  22. Mostkow, W.M. and Grossmann, I.I. (1973), "Method for determining critical displacements and deformations of rock within the sphere of large cross section", Under. Exc., 3(9), 645-646.
  23. Nam, K., Kim, J., Kwak, D., Rehman, H. and Yoo, H. (2020), "Structure damage estimation due to tunnel excavation based on indoor model test", Geomech. Eng., 21(2), 95-102. https://doi.org/10.12989/gae.2020.21.2.095.
  24. Qin, S., Shao, Z.S., Yuan, B., Zheng, X.M., Zhao, N.N. and Wu, K. (2023), "A simple prediction model for mechanical response of lined tunnels incorporating yielding elements", Int. J. Appl. Mech., 15(5), 2350031. https://doi.org/10.1142/S175882512350031X.
  25. Seki, S., Kaise. S., Morisaki. Y., Azetaka, S. and Jiang, Y.J. (2008), "Model experiments for examining heaving phenomenon in tunnels", Tunn. Undergr. Sp. Tech., 23, 128-138. https://doi.org/10.1016/j.tust.2007.02.007.
  26. Seo, S., Lim, H. and Chung, M. (2021), "Evaluation of failure mode of tunnel-type anchorage for a suspension bridge via scaled model tests and image processing", Geomech. Eng., 24(5), 457-470. https://doi.org/10.12989/gae.2021.24.5.457.
  27. Shahin, H.M., Nakai, T., Ishii, K., Iwata, T. and Kuroi, S. (2016), "Investigation of influence of tunneling on existing building and tunnel: model tests and numerical simulations", Acta Geotech., 11(3), 679-692. https://doi.org/10.1007/s11440-015-0428-2.
  28. Su, K., Zhang, Y.J., Wu, H.G. and Zhou, L. (2019), "Evolution of surrounding rock safety factor and support installation time during tunnel excavation", Chi. J. Rock. Mech. Eng., 38(S1), 2964-2975. https://doi.org/10.13722/j.cnki.jrme.2018.1260.
  29. The People's Republic of China Industry Standard Writing Group. (2016), "Code for design of railway tunnel (TB10003-2016)", China Railway Press, Beijing, China.
  30. Trckova, J., Prochazka. P.P. and Peskova, S. (2008), "Tunnel face stability as a function of the purchase length", WIT. Tran. Built. Environ., 102, 81-89. https://doi.org/10.2495/US080091
  31. Wang, K. (2017), "Spatial deformation and load release mechanism of surrounding rock in tunnel construction with super-large section and small spacing and its engineering application", Shandong University, Jinan, China.
  32. Waltham, A.C. and Swift, G.M. (2004), "Bearing capacity of rock over mined cavities in Nottingham", Eng. Geol., 75(1), 15-31. https://doi.org/10.1016/j.enggeo.2004.04.006.
  33. Wu, K. and Shao, Z.S. (2019), "Study on the effect of flexible layer on support structures of tunnel excavated in viscoelastic rocks", J. Eng. Mech., 145(10), 04019077. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001657.
  34. Wu, K., Shao, Z.S., Qin, S. and Li, B.X. (2020a), "Determination of deformation mechanism and countermeasures in silty clay tunnel", J. Perform. Constr. Fac., 34(1), 04019095. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001381.
  35. Wu, K., Shao, Z.S., Hong, S.Y. and Qin, S. (2020b), "Analytical solutions for mechanical response of circular tunnels with double primary linings in squeezing grounds", Geomech. Eng.. 22(6), 509-518. https://doi.org/10.12989/gae.2020.22.6.509.
  36. Wu, K., Shao, Z.S., Qin, S., Wei, W. and Chu, Z.F. (2021a), "A critical review on the performance of yielding supports in squeezing tunnels", Tunn. Undergr. Sp. Tech., 115, 103815. https://doi.org/10.1016/j.tust.2021.103815.
  37. Wu, K., Shao, Z.S., Qin, S., Zhao, N.N. and Chu, Z.F. (2021b), "An improved nonlinear creep model for rock applied to tunnel displacement prediction", Int. J. Appl. Mech., 13(8), 2150094. https://doi.org/10.1142/S1758825121500940.
  38. Wu, K., Shao, Z.S., Sharifzadeh, M., Chu, Z.F. and Qin, S. (2022a), "Analytical approach to estimating the influence of shotcrete hardening property on tunnel response", J. Eng. Mech., 148(1), 04021127. https://doi.org/10.1061/(ASCE)EM.1943-7889.0002052.
  39. Wu, K., Shao, Z.S., Sharifzadeh, M., Hong, S.Y. and Qin, S. (2022b), "Analytical computation of support characteristic curve for circumferential yielding lining in tunnel design", J. Rock Mech. Geotech. Eng., 14(1), 144-152. https://doi.org/10.1016/j.jrmge.2021.06.016.
  40. Wu, K., Shao, Z.S., Jiang, Y.L., Zhao, N.N., Qin, S. and Chu, Z.F. (2023a), "Determination of stiffness of circumferential yielding lining considering the shotcrete hardening property", Rock Mech. Rock Eng., 56, 3023-3036. https://doi.org/10.1007/s00603-022-03122-0.
  41. Wu, K., Sharifzadeh, M., Shao, Z.S., Zheng, X.M., Zhao, N.N. and Yang, Y.Z. (2023b), "Analytical model for soft rock tunnel with large deformation using stiff and yielding lining solutions", Int. J. Geomech., 23(11), 04023207. https://doi.org/10.1061/IJGNAI.GMENG-8483.
  42. Wu, K., Xing, C.Z., Yang, Y.Z., Shao, Z.S., Zhao, N.N. and Chu, Z.F. (2023c), "A unified design model for estimating tunnel performance considering multiple excavation stoppages", Arch. Civ. Mech. Eng., 23(4), 260. https://doi.org/10.1007/s43452-023-00746-z.
  43. Wu, K., Zheng, X.M., Zhao, N.N. and Shao, Z.S. (2024a), "Effect of compressible layer on time-dependent behaviour of soft-rock large deformation tunnels revealed by mathematical analytical method", Appl. Math. Model., 126, 457-481. https://doi.org/10.1016/j.apm.2023.10.021.
  44. Wu, K., Song, J.A., Zhao, N.N. and Shao, Z.S. (2024b), "Study on the time-dependent interaction between surrounding rock and yielding supports in deep soft rock tunnels", Int. J. Numer. Anal. Met. Geomech., 48, 1-22. https://doi.org/10.1002/nag.3650.
  45. Xu, Q.W., Ding, W.Q., Zhu, H.H., Tang, Z.H. and Li, Y.H. (2017), "Study on progressive unloading failure characteristics of super large tunnel in soft and weak rock mass", Chi. Civil. Eng. J., 50(1), 104-114+132. https://doi.org/10.15951/j.tmgcxb.2017.01.013.
  46. Zhao, N.N., Shao, Z.S., Chen, X.Y., Yuan, B. and Wu, K. (2022a), "Prediction of mechanical response of a flexible support system supported tunnel in viscoelastic geomaterials", Arch. Civ. Mech. Eng., 22(4), 160. https://doi.org/10.1007/s43452-022-00485-7.
  47. Zhao, N.N., Shao, Z.S., Yuan, B., Chen, X.Y. and Wu, K. (2022b), "Analytical approach to the coupled effects of slope angle and seepage on shallow lined tunnel response", Int. J. Appl. Mech., 14(2), 2250003. https://doi.org/10.1142/S175882512250003X.
  48. Zhao, N.N., Shao, Z.S., Chen, X.Y., Yuan, B. and Wu, K. (2023a), "Analytical approach to estimating the influence of friction slip contact between surrounding rock and concrete lining on mechanical response of deep rheological soft rock tunnels", Appl. Math. Model., 113, 287-308. https://doi.org/10.1016/j.apm.2022.09.012.
  49. Zhao, N.N., Shao, Z.S. and Wu, K. (2023b), "Analytical approach to predicting the time-dependent response of deep soft rock tunnels considering the compressible layer and stress path effects", Int. J. Geomech., 23(6), 04023070. https://doi.org/10.1061/IJGNAI/GMENG-8099.
  50. Zhou, J., Yang, X,A. and Ding, Z. (2023a), "A secondary development based on the Hoek-Brown criterion for rapid numerical simulation prediction of mountainous tunnels in China", Geomech. Eng., 34(1), 69-86. https://doi.org/10.12989/gae.2023.34.1.069.
  51. Zhou, J., Yang, X.A. and Chu, Z. (2023b), "Load laws of composite lining in mountain tunnel model tests and numerical simulation validation", J. Mountain Sci., 20(7), 2041-2057. https://doi.org/10.1007/s11629-023-8043-4.