References
- Abd-Alla, A.N. and Abo-Dahab, S.M. (2009), "Time-harmonic sources in a generalized magneto-thermoviscoelastic continuum with and without energy dissipation", Appl. Math. Model., 33(5), 2388-2402. https://doi.org/10.1016/j.apm.2008.07.008.
- Aljadani, M.H. and Zenkour, A.M. (2022a), "A modified tworelaxation thermoelastic model for a thermal shock of rotating infinite medium", Materials, 15(24), 9056. https://doi.org/10.3390/ma15249056.
- Aljadani, M.H. and Zenkour, A.M. (2022b), "Effect of hydrostatic initial stress on a rotating half-Space in the context of a tworelaxation power-law model", Mathematics, 10(24), 4727. https://doi.org/10.3390/math10244727.
- Alfrey, T.T. and Gurnee, E.F. (1956), "Dynamics of viscoelastic behavior, in: Rheology", Theory Appl., 387-429. https://doi.org/10.1016/B978-0-12-395694-1.50017-8.
- Baljeet, S. (2021), "Nonlocal effects on propagation of waves in a generalized thermoelastic solid half space", Struct. Eng. Mech., 77(4), 473-479. https://doi.org/10.12989/sem.2021.77.4.473.
- Balta, F. and Suhubi, E.S. (1977), "Theory of nonlocal generalized thermoelasticity", Int. J. Eng. Sci., 15(9-10), 577-588. https://doi.org/10.1016/0020-7225(77)90054-4.
- Bayones, F.S. (2012), "The influence of diffusion on generalized magneto-thermo-viscoelastic problem of a homogenyous isotropic material", Adv. Theor. Appl. Mech., 5(2), 69-92. http://www.m-hikari.com/atam/atam2012/atam1-4-2012/bayonesATAM1-4-2012.pdf.
- Choudhuri, S.R. (2007), "On a thermoplastic three-phase-lag model", J. Therm. Stresses, 30(3), 231-238. https://doi.org/10.1080/01495730601130919.
- Eringen, A.C. (1974), "Theory of nonlocal thermoelasticity", Int. J. Eng. Sci., 12(12), 1063-1077. https://doi.org/10.1016/0020- 7225(74)90033-0.
- Eringen, A.C. (1973), "Linear theory of micropolar elasticity", J. Appl. Math. Mech., 15(6), 909-924. https://www.jstor.org/stable/24901442.
- Ferry, J.D. (1980), "Viscoelastic properties of polymers", 3rd Ed., John Wiley & Sons. https://www.wiley.com/enus/9780471048947.
- Hetnarski, R.B. and Ignaczak, J. (1999), "Generalized thermoelasticity", J. Therm. Stresses, 22(4-5), 451-476. https://doi.org/10.1080/014957399280832.
- Hetnarski, R.B. and Ignaczak, J. (2000), "Nonclassical dynamical thermoelasticity", Int. J. Solids Struct., 37(1-2), 215-224. https://doi.org/10.1016/S0020-7683(99)00089-X.
- Hobiny, A., Abbas, A., Alshehri, I. and Marin, M. (2022), "Analytical solutions of nonlocal thermoelastic Interaction on semi-infinite mediums induced by ramp-type heating", Symmetry, 14(5), 864. https://doi.org/10.3390/sym14050864.
- Inan, E. and Eringen, A.C. (1991), "Nonlocal theory of wave propagation in thermoelastic plates", Int. J. Eng. Sci., 29(7), 831-843. https://doi.org/10.1016/0020-7225(91)90005-N.
- Kalkal, K.K., Sheoran, D. and Deswal, S. (2020), "Reflection of plane waves in a nonlocal micropolar thermoelastic medium under the effect of rotation", Acta Mech., 231(7), 2849-2866. https://doi.org/10.1007/s00707-020-02676-w.
- Koutsoumaris, C., Eptaimeros, K.G. and Tsamasphyros, G.J. (2017), "A different approach to Eringen.s nonlocal integral stress model with applications for beams", Int. J. Sol. Struct. 112, 222-238. https://doi.org/10.1016/j.ijsolstr.2016.09.007.
- Kumar, R., Chawla, V. and Abbas, I.A. (2012), "Effect of viscosity on wave propagation in anisotropic thermoelastic medium with three-phase-lag model", Theor. Appl. Mech., 39(4), 313-341. http://www.doiserbia.nb.rs/img/doi/1450-5584/2012/1450-55841204313K.pdf. https://doi.org/10.2298/TAM1204313K
- Liew, K.M., Zhang, Y. and Zhang, L.W. (2017), "Nonlocal elasticity theory for grapheme modeling and simulation: Prospects and challenges", J. Model. Mech. Mat., 20160159. https://doi.org/10.1515/jmmm-2016-0159.
- Marin, M., Ellahi, R., Vlase, S. and Bhatti, M.M. (2020a), "On the decay of exponential type for the solutions in a dipolar elastic body", J. Taibah Univ. Sci., 14(1), 534-540. https://doi.org/10.1080/16583655.2020.1751963.
- Montanaro, A. (1999), "On singular surfaces in isotropic linear thermoelasticity with initial stress", J. Acoust Soc. Am., 106(3), 1586-1588. https://doi.org/10.1121/1.427154.
- Mukhopadhyay, S. (2000), "Effects of thermal relaxations on thermo-visco-elastic interactions in an unbounded body with a spherical cavity subjected to a periodic loading on the boundary", J. Therm. Stress, 23(7), 675-684. https://doi.org/10.1080/01495730050130057.
- Othman, M.I.A. (2004), "Generalized electromagnetothermoviscoelastic in case of 2-D thermal shock problem in a finite conducting medium with one relaxation time", Acta Mech., 169(5), 37-51. https://doi.org/10.1007/s00707-004-0101-6.
- Othman, M.I.A., Said, S.M. and Marin, M. (2019), "A novel model of plane waves of two-temperature fiber-reinforced thermoelastic medium under the effect of gravity with threephase-lag model", Int. J. Numer. Meth. Heat Fluid Fl., 29(12), 4788-4806. https://doi.org/10.1108/HFF-04-2019-0359.
- Said, S.M. (2020a), "Novel model of thermo-magneto-viscoelastic medium with variable thermal conductivity under effect of gravity", Appl. Math. Mech., 41(3), 819-832. https://doi.org/10.1007/s10483-020-2603-9.
- Said, S.M. (2020b), "The effect of mechanical strip load on a magneto-micropolar thermoelastic medium: Comparison of four different theories", Mech. Res. Commun., 107, 103549. https://doi.org/10.1016/j.mechrescom.2020.103549.
- Said, S.M. (2022), "A viscoelastic-micropolar solid with voids and microtemperatures under the effect of the gravity field", Geomech. Eng., 31(2), 159-166. https://doi.org/10.12989/gae.2022.31.2.159.
- Said, S.M. (2023), "A novel model of a nonlocal porous thermoelastic solid with temperature-dependent properties using an eigenvalue approach", Geomech. Eng., 32(2), 137-144. https://doi.org/10.12989/gae.2023.32.2.137.
- Samanta, S.C. and Maisha, R.K. (2008), "A study on magnetothermo-viscoelastic interactions in an elastic half-space subjected to a temperature pulse, using state space approach", J. Therm. Stresses, 31(12), 1149-1169. https://doi.org/10.1080/15313220802507867.
- Sarkar, N. and Tomar, S.K. (2019), "Waves in dual-phase-lag thermoelastic materials with voids based on Eringen's nonlocal elasticity", J. Therm. Stresses, 42(8), 580-606. https://doi.org/10.1080/01495739.2019.1591249.
- Scutaru, M.L., Vlase, S., Marin, M. and Modrea, A. (2020b), "New analytical method based on dynamic response of planar mechanical elastic systems", Bound Value Probl., 2020, 104. https://doi.org/10.1186/s13661-020-01401-9.
- Tzou, D.Y. (1995),"A unified field approach for heat conduction from macro-to micro-scales", ASME J. Heat Transf. 117(1), 8-16. https://doi.org/10.1115/1.2822329.
- Tschoeg, N.W. (1997), "Time dependence in material properties: An overview", Mech. Time-Dep. Mat., 1(3), 3-31. https://doi.org/10.1023/A:1009748023394.
- Zenkour, A.M. (2018), "Refined two-temperature multi-phase-lags theory for thermomechanical response of microbeams using the modified couple stress analysis", Acta Mech., 229(9), 3671-3692. https://doi.org/10.1007/s00707-018-2172-9.
- Zenkour, A.M. (2020a), "Wave propagation of a gravitated piezothermoelastic half-space via a refined multi-phase-lags theory", Mech. Adv. Mater. Struct., 27(22), 1923-1934. https://doi.org/10.1080/15376494.2018.1533057.
- Zenkour, A.M. (2020b), "Magneto-thermal shock for a fiberreinforced anisotropic half-space studied with a refined multidual-phase-lag model", J. Phys. Chem. Solids, 137, 109213. https://doi.org/10.1016/j.jpcs.2019.109213.
- Zenkour, A.M. (2020c), "Thermal-shock problem for a hollow cylinder via a multi-dual-phase-lag theory", J. Therm. Stress., 43(6), 687-706. https://doi.org/10.1080/01495739.2020.1736966.
- Zenkour, A.M. (2020d), " Exact coupled solution for photothermal semiconducting beams using a refined multi-phase-lag theory", Opt. Laser Technol., 128, 106233. https://doi.org/10.1016/j.optlastec.2020.106233.
- Zenkour, A.M. and El-Mekawy, H.F. (2020), "On a multi-phaselag model of coupled thermoelasticity", Int. Commun. Heat Mass Transfer., 116, 104722. https://doi.org/10.1016/j.icheatmasstransfer.2020.104722.
- Zenkour, A.M., Saeed, T. and Aati, A.M. (2023), "Refined dualphase-lag Theory for the 1D behavior of skin tissue under ramptype heating", Materials, 16(6), 2421. https://doi.org/10.3390/ma16062421.
- Zenkour, A.M. and El-Shahrany, H.D. (2023), "Vibration of viscoelastic magnetostrictive plates embedded in viscoelastic foundations in hygrothermal environments", Acta Mech. Sin., 39, 522305. https://doi.org/10.1007/s10409-022-22305-x.