DOI QR코드

DOI QR Code

Disintegration process and micro mechanism of mudstone under dry-wet cycles

  • Ji Chen (School of Rail Transportation, Soochow University) ;
  • Ruyu Huang (Human Resources and Social Security Bureau) ;
  • Xinyu Luo (School of Rail Transportation, Soochow University) ;
  • Xin Liao (Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University) ;
  • Qiang Tang (School of Rail Transportation, Soochow University)
  • Received : 2022.01.24
  • Accepted : 2023.11.28
  • Published : 2024.01.10

Abstract

With the rapid development of highways and railways, series of traffic safety issues emerged because of mudstone disintegration. To research on the mechanism and further guarantee the stability and safety of transportation infrastructure built on or near mudstone formations, the mudstone disintegration test of mudstone was carried out based on mudstone and sandy mudstone. The element types, cementation characteristics and pore characteristics of the tested specimens were studied by means of Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and Image Pro Plus (IPP). The disintegration index of mudstone was approximately 1%, and even some specimens were difficult to be calculated, while the disintegration index of sandy mudstone is approximately 8.7%. According to the results, the two mudstones belong to grade II and III disintegration respectively, of which the sandy stone presents more extensive disintegration than mudstone. This phenomenon was distinguished that, the clay minerals of mudstone are approximately 25% more abundant than those of sandy mudstone, and the unit pore area is 20 ㎛2 larger, which result in different microstructure and water absorption capacities. In the liquid phase, the ions in the mudstone specimens were exchanged and combined with water molecules in the environment during the whole disintegration process. This results in continuous spalling and fragmentation of clay minerals, the emergence of secondary fractures, and the deepening of primary fractures.

Keywords

Acknowledgement

We would like to thank Analytical and Testing Center of Southwest Jiaotong University. The research presented here is supported by the National Key Research and Development Program of China (2023YFC3707801), National Natural Science Foundation of China (52078317), Natural Science Foundation of Jiangsu Province for Excellent Young Scholars (BK20211597), project from Bureau of Housing and Urban-Rural Development of Suzhou (2021-25; 2021ZD02; 2021ZD30; 2023ZD26), Bureau of Geology and Mineral Exploration of Jiangsu (2021KY06), China Tiesiju Civil Engineering Group (2021-19), and CCCC Tunnel Engineering Company Limited (8gs-2021-04)..

References

  1. Aksoy, M., Ankara, H. and Kandemir, S.Y. (2019), "Preparation and evaluation of spherical samples for Slake Durability Index test", Int. J. Environ. Sci. Technol., 16(9), 5243-5250. https://doi.org/10.1007/s13762-019-02254-1.
  2. Arman, H., Abdelghany, O., Saima, M.A., Aldahan, A., Paramban, S. (2021), "Slaking behavior of evaporitic rocks from Abu Dhabi area, United Arab Emirates", Arabian J. Geosci., 14(11), 1-8. https://doi.org/10.1007/s12517-021-07295-w.
  3. ASTM D4644-08. (2008), Standard Test Method for Slake Durability of Shales and Similar Weak Rocks. West Conshohocken, PA: ASTM International.
  4. Boulesteix, K., Poyatos-More, M., Hodgson, D.M., Flint, S. and Taylor, K.G. (2020), "Fringe or background: Characterizing deep-water mudstones beyond the basin-floor fan sandstone pinchout", J. Sediment. Res., 90(12), 1678-1705. https://doi.org/10.2110/jsr.2020.048.
  5. Chen, J.N., Salihoglu, H., Benson, C.H. and Likos, W.J. (2019), "Hydraulic conductivity of bentonite-polymer geosynthetic clay liners to coal combustion product leachates", J. Geotech. Geoenviron. Eng., 145(9). https://doi.org/10.1007/978-981-13-2224-2_82.
  6. Chen, J.N., Tinjum, J. and Edil, T. (2013), "Leaching of alkaline substances and heavy metals from recycled concrete aggregate used as unbound base course", Transp. Res. Rec., (2349), 81-90. https://doi.org/10.3141/2349-10.
  7. Chen, J.N., Ren, X., Xu, H. and Zhang, C. (2022), "Effect of grain size and moisture content on the interfacial shear behavior between sandy soil and geogrid", Int. J. Geomech., accepted.
  8. Chen, J.N., Benson, C.H. and Edil, T.B. (2018), "Hydraulic conductivity of geosynthetic clay liners with sodium bentonite to coal combustion product leachates", J. Geotech. Geoenviron. Eng., 144(3). https://doi.org/10.1061/(ASCE)GT.19435606.0001844.
  9. Chen, J.N., Sanger, M., Ritchey, R., Ginder-vogol, M. and Edil, T.B. (2020), "Neutralization of high pH and alkalinity effluent from Recycled Concrete Aggregate (RCA) by common subgrade soil", J. Environ. Qual., 49(1), 172-183. https://doi.org/10.1002/jeq2.20008.
  10. DeReuil, A.A., Birgenheier, L.P. and McLennan, J. (2019), "Effects of anisotropy and saturation on geomechanical behavior of mudstone", J. Geophys. Res.: Solid Earth, 124(8), 8101-8126. https://doi.org/10.1029/2018JB017034.
  11. Dner, Z., Hu, Q., Kumral, M., Kibria, M.G. and Sun, M. (2021), "Petrophysical characteristics of silurian mudstones from central taurides in Southern Turkey", J. Earth Sci., 32(4), 778-798. https://doi.org/10.1007/s12583-021-1408-0.
  12. Dupontnivet, G., Hoorn, C. and Konert, M. (2008), "Tibetan uplift prior to the Eocene-Oligocene climate transition: Evidence from pollen analysis of the Xining Basin", Geol., 37(6), 987. https://doi.org/10.1130/0091-7613-37.6.506.
  13. Feng, Z., Xu, Q., Luo, X., Huang, R., Liao, X. and Tang, Q. (2022), "Microstructure, deformation characteristics and energy analysis of mudstone under water absorption process", Energies, 15(20), 7511. https://doi.org/10.3390/en15207511.
  14. Ferraz, E. and Gamelas, J., Coroado, J., Monteiro, C. and Rocha, F. (2019), "Recycling waste seashells to produce calcitic lime: Characterization and wet slaking reactivity", Waste Biomass Valorization, 10(8), 2397-2414. https://doi.org/10.1007/s12649-018-0232-y.
  15. Gautam, T.P. and Shakoor, A. (2019), "A durability classification of clay-bearing rocks based on particle size distribution of slaked material", Environ. Eng. Geosci., 23(2), 125-135. https://doi.org/10.2113/gseegeosci.23.2.125.
  16. Gautam, T.P. and Shakoor, A. (2016), "Comparing the slaking of clay-bearing rocks under laboratory conditions to slaking under natural climatic conditions", Rock Mech. Rock Eng., 49(1), 19-31. https://doi.org/10.1007/s00603-015-0729-7.
  17. Gautam, T.P. and Shakoor, A. (2013), "Slaking behavior of clay-bearing rocks during a one-year exposure to natural climatic conditions", Eng. Geol., 166(8), 17-25. https://doi.org/10.1016/j.enggeo.2013.08.003.
  18. Iyare, U.C., Blake, O.O. and Ramsook, R. (2021), "Modelling the failure behavior of mudstones under high pressures", Rock Mech. Rock Eng., 1-14. https://doi.org/10.1007/s00603-021-02467-2.
  19. Kim, E., Garcia, A. and Changani, H. (2018), "Fragmentation and energy absorption characteristics of Red, Berea and Buff sandstones based on different loading rates and water contents", Geomech. Eng., 4(2), 151-159. https://doi.org/10.12989/gae.2018.14.2.000.
  20. Kim, J.Y., Park, Y.H. and Cho, K.H. (2018), "Study on applicability of shale as an embankment material in railway roadbed using slake durability test", J. Korean Soc. railway, 21(2), 166-176. https://doi.org/10.7782/JKSR.2018.21.2.166.
  21. Koralegedara, N.H. and Maynard, J.B. (2017), "Chemical, mineralogical and textural properties of the Kope Formation mudstones: How they affect its durability", Eng. Geol., 228: 312-322. https://doi.org/10.1016/j.enggeo.2017.08.025.
  22. Luo, X., Gao, H., He, P. and Liu, W. (2021), "Experimental investigation of dry density, initial moisture content, and temperature for granite residual soil disintegration", Arabian J. Geosci., 14(11). https://doi.org/10.1007/s12517-021-07239-4.
  23. Meisels, R., Toifl, M., Hartlieb, P., Kuchar, F. and Antretter, T. (2015), "Microwave propagation and absorption and its thermo-mechanical consequences in heterogeneous rocks", Int. J. Min. Process., 135: 40-51. https://doi.org/10.1016/j.minpro.2015.01.003.
  24. Milroy, P., Wright, V.P. and Simms, M.J. (2019), "Dryland continental mudstones: Deciphering environmental changes in problematic mudstones from the Upper Triassic (Carnian to Norian) Mercia Mudstone Group, south-west Britain", Sedimentology, 66(7). https://doi.org/10.1111/sed.12626.
  25. Momeni, A., Hashemi, S.S., Khanlari, G.R. and Heidari, M. (2017), "The effect of weathering on durability and deformability properties of granitoid rocks", Bull. Eng. Geol. Environ., 76(3), 1-13. https://doi.org/10.1007/s10064-016-0999-7.
  26. Mori, M., Sakagami, Y., Hamazaki, Y. and Jojima, T. (2018), "Evaluation of the influence of sprinkling powdered slaked lime on microorganisms for the prevention of domestic animal infectious diseases", Environ. Technol., 1-40. https://doi.org/10.1080/09593330.2018.1465128.
  27. Nakano, M. and Sakai, T. (2016), "Interpretation of slaking of a mudstone embankment using soil skeleton structure model concept and reproduction of embankment failure by seismic analysis", Japanese Geotechnical Society Special Publication, 2(5), 282-287. https://doi.org/10.3208/jgssp.JPN-124.
  28. Park, S.S., Ye, S.R. and Kim, G.W. (2016), "Slaking characteristics of shale in the Gyoungsang Super-group, Korea", J. Eng. Geol., 26(3), 315-324. https://doi.org/10.9720/kseg.2016.3.315.
  29. Pesce, C., Pesce, G.L., Molinari, M. and Richardson, A. (2020), "Effects of organic additives on calcium hydroxide crystallisation during lime slaking", Cement. Concrete Res., 139, 106254. https://doi.org/10.1016/j.cemconres.2020.106254.
  30. Sakai, T. and Nakano, M. (2015), "Interpretation of the mechanical behavior of embankments having various compaction properties based on the soil skeleton structure - ScienceDirect", Soils Found., 55(5), 1069-1085. https://doi.org/10.1016/j.sandf.2015.09.009.
  31. Sargent, C., Andras, P., Goulty, N.R. and Aplin A.C. (2016), "Compaction of diagenetically altered mudstones - Part 1: Mechanical and chemical contributions", Mar. Pet. Geol., 77: 703-713. https://doi.org/10.1016/j.marpetgeo.2016.07.015.
  32. Selen, L., Panthi, K.K. and Vistnes, G. (2019), "An analysis on the slaking and disintegration extent of weak rock mass of the water tunnels for hydropower project using modified slake durability test", Bull. Eng. Geol. Environ., 79(4). https://doi.org/10.1007/s10064-019-01656-2.
  33. Shakoor, A. and Gautam, T.P. (2015), "Influence of geologic and index properties on disintegration behavior of clay-bearing rocks", Environ. Eng. Geosci., 21(3), 197-209. https://doi.org/10.2113/gseegeosci.21.3.197.
  34. Shumilova, T.G., Shevchuk, S.S. and Isayenko S.I. (2016), "Metal concentrations and carbonaceous matter in the black shale type rocks of the Urals", Doklady Earth Sciences, 469(1), 695-698. https://doi.org/10.1134/S1028334X16070060.
  35. Tang, Q., Gu, F., Zhang, Y., Zhang, Y.Q. and Mo, J.L. (2018), "Impact of biological clogging on the barrier performance of landfill liners", J. Environ. Manage., 222, 44-53. https://doi.org/10.1016/j.jenvman.2018.05.039.
  36. Tang, Q., Katsumi, T., Inui, T. and Li, Z.Z. (2014), "Membrane behavior of bentonite amended compacted clay", Soils Found., 54(3), 329-344. https://doi.org/10.1016/j.sandf.2014.04.019.
  37. Tang Q., Katsumi T., Inui T., Li Z.Z. (2015), "Influence of pH on the membrane behavior of bentonite amended Fukakusa clay", Sep. Purif. Technol., 141, 132-142. https://doi.org/10.1016/j.seppur.2014.11.035.
  38. Tang, Q., Zhang, Y., Gao, Y.F. and Gu, F. (2017), "Use of cement-chelated solidified MSWI fly ash for pavement material: mechanical and environmental evaluations", Can. Geotech. J., 54(11), 1553-1566. https://doi.org/10.1139/cgj-2017-0007.
  39. Vu, H.H.T., Gu, S., Thriveni, T., Khan, M.D., Lai, Q.T. and Ji, W.A. (2019), "Sustainable treatment for sulfate and lead removal from battery wastewater", Sustainability, 11(13), 3497. https://doi.org/10.3390/su11133497.
  40. Waroszewski, J., Kabala, C. and Jezierski, P. (2015), "Relief-induced soil differentiation at the sandstone-mudstone contact in the Stolowe Mountains, SW Poland", Zeitschrift Fur Geomorphologie, 59(1), 211-226. https://doi.org/10.1127/zfg_suppl/2015/S-00181.
  41. Yin, H.W., Ma, H.L., Chen, X.S., Shi, X., Yang, C., Maurice, D. and Zhang, Y. (2017), "Synthetic rock analogue for permeability studies of rock salt with mudstone", Appl. Sci., 7(9). https://doi.org/10.3390/app7090946.
  42. Zhang, L., Mao, X., Li, M., Li, B., Liu, R. and Lu, A. (2020), "Brittle-ductile transition of mudstone in coal measure rock strata under high temperature", Int. J. Geomech., 20(1). https://doi.org/10.1061/(ASCE)GM.19435622.0001549.
  43. Zdemr, S. and Ergler, Z.A. (2021), "Investigation of the slaking behavior of weak geological units in terms of undercutting rate", Bull. Min. Res. Explor., 167, 111-125. https://doi.org/10.19111/bulletinofmre.898013.
  44. Zeng, L., Luo, J.T., Liu, J. and Gao, Q.F. (2021), "Disintegration characteristics and mechanisms of carbonaceous mudstone subjected to load and cyclic drying-wetting", J. Mater. Civ. Eng., 33(8), 04021195. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003817