DOI QR코드

DOI QR Code

Optimal location of a single through-bolt for efficient strengthening of CHS K-joints

  • Amr Fayed (Department of Structural Engineering, Ain Shams University) ;
  • Ali Hammad (Department of Structural Engineering, Ain Shams University) ;
  • Amr Shaat (Department of Structural Engineering, Ain Shams University)
  • Received : 2023.10.02
  • Accepted : 2023.12.07
  • Published : 2024.01.10

Abstract

Strengthening of hollow structural sections using through-bolts is a cost-effective and straightforward approach. It's a versatile method that can be applied during both design and service phases, serving as a non-disruptive and budget-friendly retrofitting solution. Existing research on axially loaded hollow sections T-joints has demonstrated that this technique can amplify the joint strength by 50%, where single bolt could enhance the strength of the joint by 35%. However, there's a gap in understanding their use for K-joints. As the behavior of K-joints is more complex, and they are widely existent in structures, this study aims to bridge that gap by conducting comprehensive parametric study using finite element analysis. Numerical investigation was conducted to evaluate the effect of through bolts on K-joints focusing on using single through bolt to achieve most of the strengthening effect. A full-scale parametric model was developed to investigate the effect of various geometric parameters of the joint. This study concluded the existence of optimal bolt location to achieve the highest strength gain for the joint. Moreover, a rigorous statistical analysis was conducted on the data to propose design equations to predict optimal bolt location and the corresponding strength gain implementing the verified by finite element models.

Keywords

References

  1. Aguilera, J., Shaat, A. and Fam, A. (2012), "Strengthening T-joints of rectangular hollow steel sections against web buckling under brace axial compression using through-wall bolts", Thin Wall. Struct., 56, 71-78. https://doi.org/10.1016/j.tws.2012.03.013. 
  2. Ahmadi, H. and Imani, H. (2022), "SCFs in offshore two-planar tubular TT-joints reinforced with internal ring stiffeners", Ocean Syst. Eng., 12(1), 1-22. https://doi.org/10.12989/ose.2022.12.1.001. 
  3. Bains, S. (1983), "Investigating into the effects of through bolting on rectangular hollow steel beams in flexure", University of Sussex. 
  4. Bradfield, C., Morrell, P. and Ibrahim, A. (1994), "Improvement in the flexural capacity of rectangular hollow sections by through bolt stiffening", Tubular Struct., 109-114. 
  5. Dexter, E.M., Lee, M.M.K. and Kirkwood, M.G. (1996), "Overlapped K joints in circular hollow sections under axial loading (An investigation of the factors affecting the static strength using numerical modeling)", J. Offshore Mech. Arct. Eng., 118(1), 53-61. https://doi.org/10.1115/1.2828801. 
  6. Iskander, M.S., Shaat, A.A., Sayed-Ahmed, E.Y. and Soliman, E.A. (2017), "Strengthening CHS T-joints subjected to brace axial compression using through-bolts", J. Constr. Steel Res., 128, 555-566. https://doi.org/10.1016/j.jcsr.2016.09.019. 
  7. Kurobane, Y., Makino, Y. and Ochi, K. (1984), "Ultimate resistance of unstiffened tubular joints", J. Struct. Eng., 110(2), 385-400. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:2(385). 
  8. Kurobane, Y., Ogawa, K., Ochi, K. and Makino, Y. (1986), "Local buckling of braces in tubular K-joints", Thin Wall. Struct., 4, 23-40. https://doi.org/10.1016/0263-8231(86)90008-X. 
  9. Lee, M.M.K. (1999), "Strength, stress and fracture analyses of offshore tubular joints using finite elements", J. Constr. Steel Res., 51, 265-286. https://doi.org/10.1016/S0143-974X(99)00025-5. 
  10. Lee, M.M.K. and Wilmshurst, S.R. (1995), "Numerical modelling of CHS joints with muitiplanar Double-K configuration", J. Constr. Steel Res., 32(3), 281-301. https://doi.org/10.1016/0143-974X(95)93899-F. 
  11. Mohamed, M.A., Shaat, A.A. and Sayed-Ahmed, E.Y. (2015), "Through-bolts to control ovalization of CHS T-joints under brace member compressive loads", Tubular Structures XV, Rio de Janeiro, Brazil. https://doi.org/10.1201/b18410-74. 
  12. Ozyurt, E. (2020), "Finite element study on axially loaded reinforced Square Hollow Section T-joints at elevated temperatures", Thin Wall. Struct., 148, 106582. https://doi.org/10.1016/j.tws.2019.106582. 
  13. Ozyurt, E. and Das, S. (2019), "Experimental and numerical studies on axially loaded reinforced square hollow section Tjoints", Eng. Struct., 192, 323-334. https://doi.org/10.1016/j.engstruct.2019.05.012. 
  14. Prashob, P.S., Shashikala, A.P. and Somasundaran, T.P. (2018), "Effect of FRP parameters in strengthening the tubular joint for offshore structures", Ocean Syst. Eng., 8(4), 409-426. https://doi.org/10.12989/ose.2018.8.4.409. 
  15. Sari, B. and Ozyurt, E. (2022), "Numerical studies on axially loaded doubler plate reinforced elliptical hollow section Tjoints", Steel Compos. Struct., 43(1), 107-116. https://doi.org/10.12989/scs.2022.43.1.107. 
  16. Singh, S. and Dev, N. (2023), "Underwater strengthening of tubular joints of fixed offshore steel platform using grouted clamps", International Conference on Structural Engineering and Construction Management, 245-262. https://doi.org/10.1007/978-3-031-12011-4_19. 
  17. Van der Vegte, G.J., Wardenier, J. and Puthli, R.S. (2010), "Fe analysis for welded hollow-section joints and bolted joints", Proc. Inst. Civil Eng.: Struct. Build., 163(6), 427-437. https://doi.org/10.1680/stbu.2010.163.6.427. 
  18. Wardenier, J., Kurobane, Y., Packer, J., Dutta, D. and Yeomans, N. (1991), Design Guide for Circular Hollow Section (CHS) Joints under Predominantly Static, 1st Edition, Vol. 1. 
  19. Wardenier, J., Kurobane, Y., Packer, J.A., Van Der Vegte, G.J. and Zhao, X.L. (2008), Design Guide for Circular Hollow Section (CHS) Joints under Predominantly Static Loading, 2nd Edition, Vol. 1. 
  20. Xia, J., Wang, X. and Zhang, B. (2022), "Experimental study on compressive performance of CHS T-joints filled with highwater rapid-setting materials", Adv. Eng. Technol. Res., 1(1), 179. https://doi.org/10.56028/aetr.1.1.179. 
  21. Yang, K., Zhu, L., Bai, Y., Sun, H. and Wang, M. (2018), "Strength of external-ring-stiffened tubular X-joints subjected to brace axial compressive loading", Thin Wall. Struct., 133, 17-26. https://doi.org/10.1016/j.tws.2018.09.030. 
  22. Zhao, X.L. (1999), "Partially stiffened RHS sections under transverse bearing force", Thin Wall. Struct., 35(3), 193-204. https://doi.org/10.1016/S0263-8231(99)00023-3. 
  23. Zhao, X.L., Wardenier, J., Packer, J.A. and Van der Vegte, G.J. (2010), "Current static design guidance for hollow-section joints", Proc. Inst. Civil Eng.: Struct. Build., 163(6), 361-373. https://doi.org/10.1680/stbu.2010.163.6.361.