DOI QR코드

DOI QR Code

Experimental and numerical investigation of fiber-reinforced slag-based geopolymer precast tunnel lining segment

  • Received : 2023.05.04
  • Accepted : 2023.12.21
  • Published : 2024.01.10

Abstract

In this study, a new sustainable material was proposed to prepare precast tunnel lining segments (TLS), which were produced using a fiber-reinforced slag-based geopolymer composite. Slag was used as the geopolymer binder. In addition, polypropylene and carbon fibers were added to reinforce TLSs. TLSs were examined in terms of flexural performance, load-deflection response, ductility, toughness, crack characteristics, and tunnel boring machine (TBM) thrust force. Simultaneously, numerical simulation was performed using finite element analysis. The mechanical characteristics of the geopolymer composite with a fiber content of 1% were used. The results demonstrated that the flexural performance and load-deflection response of the precast TLSs were satisfactory. Furthermore, the numerical results were capable of predicting and realistically capturing the structural behavior of precast TLSs. Therefore, fiber-reinforced slag-based geopolymer composites can be applied as precast TLSs.

Keywords

References

  1. Abbas, S., Soliman, A.M. and Nehdi, M.L. (2014), "Mechanical performance of reinforced concrete and steel fiber-reinforced concrete precast tunnel lining segments: A case study", ACI Mater. J., 111(5), 501-510.  https://doi.org/10.14359/51687101
  2. Afroughsabet, V. and Ozbakkaloglu, T. (2015), "Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers", Constr. Build. Mater., 94, 73-82. https://doi.org/10.1016/j.conbuildmat.2015.06.051. 
  3. Aisheh, Y.I.A., Atrushi, D.S., Akeed, M.H., Qaidi, S. and Tayeh, B.A. (2022), "Influence of polypropylene and steel fibers on the mechanical properties of ultra-high-performance fiberreinforced geopolymer concrete", Case Stud. Constr. Mater., 17, e01234. https://doi.org/10.1016/j.cscm.2022.e01234. 
  4. Alves, L., Leklou, N., Casari, P. and de Barros, S. (2021), 'Fibermatrix bond strength by pull-out tests on slag-based geopolymer with embedded glass and carbon fibers", J. Adhes. Sci. Technol., 35(18), 2035-2045. https://doi.org/10.1080/01694243.2020.1870322. 
  5. Alzeebaree, R., Mawlod, A.O., Mohammedameen, A. and Nis, A. (2021), "Using of recycled clay brick/fine soil to produce sodium hydroxide alkali activated mortars", Adv. Struct. Eng., 24(13), 2996-3009. https://doi.org/10.1177/13694332211015742. 
  6. Amin, M., Zeyad, A.M., Tayeh, B.A. and Agwa, I.S. (2021), "Effect of high temperatures on mechanical, radiation attenuation and microstructure properties of heavyweight geopolymer concrete", Struct. Eng. Mech., 80(2), 181-199. https://doi.org/10.12989/sem.2021.80.2.181. 
  7. ASTM C348-18 (2018), Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars, Standard Test Method for Measurement the Flaxural Tensile Strength of Mortar. 
  8. Aygormez, Y., Canpolat, O., Al-mashhadani, M.M. and Uysal, M. (2020), "Elevated temperature, freezing-thawing and wettingdrying effects on polypropylene fiber reinforced metakaolin based geopolymer composites", Constr. Build. Mater., 235, 117502. https://doi.org/10.1016/j.conbuildmat.2019.117502. 
  9. Banthia, N. et al. (2012), "Fiber-reinforced concrete in precast concrete applications: Research leads to innovative products", PCI J., 57(3), 33-46.  https://doi.org/10.15554/pcij.06012012.33.46
  10. Barwart, C., Romualdi, P. and Barioffi, A. (2013), "Headrace tunnel of the El Alto hydropower project in Panama/Druckstollen des Wasserkraftprojekts El Alto in Panama", Geomech. Tunnel., 6(4), 301-311. https://doi.org/10.1002/geot.201300019. 
  11. Beno, J. and Hilar, M. (2013), "Steel fibre reinforced concrete for tunnel lining-verification by extensive laboratory testing and numerical modelling", Acta Polytechnica, 53(4), 11. 
  12. Behfarnia, K. and Rostami, M. (2017), "Mechanical properties and durability of fiber reinforced alkali activated slag concrete", J. Mater. Civil Eng., 29(12), 4017231. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002073. 
  13. Bell, J.L., Driemeyer, P.E. and Kriven, W.M. (2009a), "Formation of ceramics from metakaolin-based geopolymers: Part I-Csbased geopolymer", J. Am. Ceram. Soc., 92(1), 1-8. https://doi.org/10.1111/j.1551-2916.2008.02790.x. 
  14. Bell, J.L., Driemeyer, P.E. and Kriven, W.M. (2009b), "Formation of ceramics from metakaolin-based geopolymers. Part II: Kbased geopolymer", J. Am. Ceram. Soc., 92(3), 607-615. https://doi.org/10.1111/j.1551-2916.2008.02922.x. 
  15. Britto, J. and Muthuraj, M.P. (2019), "Prediction of compressive strength of bacteria incorporated geopolymer concrete by using ANN and MARS", Struct. Eng. Mech., 70(6), 671-681. https://doi.org/10.12989/sem.2019.70.6.671. 
  16. Buratti, N., Mazzotti, C. and Savoia, M. (2011), "Post-cracking behaviour of steel and macro-synthetic fibre-reinforced concretes", Constr. Build. Mater., 25(5), 2713-2722. https://doi.org/10.1016/j.conbuildmat.2010.12.022. 
  17. Caratelli, A., Meda, A., Rinaldi, Z. and Spagnuolo, S. (2016), "Precast tunnel segments with GFRP reinforcement", Tunnel. Undergr. Space Technol., 60, 10-20. https://doi.org/10.1016/j.tust.2016.07.011. 
  18. Chinchillas-Chinchillas, M.J., Orozco-Carmona, V.M., Gaxiola, A., Alvarado-Beltran, C.G., Pellegrini-Cervantes, M.J., Baldenebro-Lopez, F.J. and Castro-Beltran, A. (2019) "Evaluation of the mechanical properties, durability and drying shrinkage of the mortar reinforced with polyacrylonitrile microfibers", Constr. Build. Mater., 210, 32-39. https://doi.org/10.1016/j.conbuildmat.2019.03.178. 
  19. Dean, A., Young, D.J. and Kramer, G.J.E. (2006), "The use and performance of precast concrete tunnel linings in seismic areas", IAEG2006. 
  20. Gowripalan, N., Sirivivatnanon, V. and Lim, C.C. (2000), "Chloride diffusivity of concrete cracked in flexure", Cement Concrete Res., 30(5), 725-730. https://doi.org/10.1016/S0008-8846(00)00216-7. 
  21. Han, K., Ju, J.W., Zhang, H., Zhu, Y., Chang, T.S. and Wang, Z. (2021), "Mechanical response analysis of self-healing cementitious composites with microcapsules subjected to tensile loading based on a micromechanical damage-healing model", Constr. Build. Mater., 280, 122251. https://doi.org/10.1016/j.conbuildmat.2021.122251. 
  22. Han, K., Ju, J.W.W., Zhu, Y., Zhang, H., Chang, T.S. and Wang, Z. (2021), "Mechanical responses of microencapsulated selfhealing cementitious composites under compressive loading based on a micromechanical damage-healing model", Int. J. Damage Mech., 30(10), 1475-1496. https://doi.org/10.1177/10567895211011239. 
  23. Han, K., Zhang, D., Chen, X., Su, D., Ju, J.W.W., Lin, X.T. and Cui, H. (2023), "A resilience assessment framework for existing underground structures under adjacent construction disturbance", Tunnel. Undergr. Space Technol., 141, 105339. https://doi.org/10.1016/j.tust.2023.105339. 
  24. Han, K., Ju, J.W.W., Zhang, C., Su, D., Cui, H., Lin, X.T. and Chen, X. (2023), "A resilience assessment framework for microencapsulated self-healing cementitious composites based on a micromechanical damage-healing model", Int. J. Damage Mech., 10567895231197236. https://doi.org/10.1177/10567895231197237. 
  25. He, P., Jia, D., Lin, T., Wang, M. and Zhou, Y. (2010), "Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites", Ceram. Int., 36(4), 1447-1453. https://doi.org/10.1016/j.ceramint.2010.02.012. 
  26. Hordijk, D.A. (1991), "Local approach to fatigue of concrete, doctor dissertation", Delft University of Technology. 
  27. Kasper, T. et al. (2008), "Lining design for the district heating tunnel in Copenhagen with steel fibre reinforced concrete segments", Tunnel. Undergr. Space Technol., 23(5), 574-587. https://doi.org/10.1016/j.tust.2007.11.001. 
  28. Khaliq, W. and Kodur, V. (2018), "Effectiveness of polypropylene and steel fibers in enhancing fire resistance of high-strength concrete columns", J. Struct. Eng., 144(3), 4017224. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001981. 
  29. Kolmar, W. (1986), "Beschreibung der kraftuebertragung uber risse in nichtlinearen finite-element-berechnungen von stahlbetontrag-werken", Dissertation, TH Darmstadt. 
  30. Koniki, S., Kasagani, H., Prathipati, S.R.R.T. and Paluri, Y. (2021), "Mechanical behavior of triple-blended hybrid fiberreinforced concrete: An experimental and numerical study", Innov. Infrastr. Solut., 6(3), 1-14. https://doi.org/10.1007/s41062-021-00526-9. 
  31. Kwek, S.Y., Awang, H. and Cheah, C.B. (2021), "Influence of liquid-to-solid and alkaline activator (sodium silicate to sodium hydroxide) ratios on fresh and hardened properties of alkaliactivated palm oil fuel ash geopolymer", Mater., 14(15), 4253. https://doi.org/10.3390/ma14154253. 
  32. Li, V.C., Wang, S. and Wu, C. (2001), "Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC)", Mater. J., 98(6), 483-492.  https://doi.org/10.14359/10851
  33. Luhar, S., Nicolaides, D. and Luhar, I. (2021), "Fire resistance behaviour of geopolymer concrete: An overview", Build., 11(3), 82. https://doi.org/10.3390/buildings11030082. 
  34. Ma, C.K., Awang, A.Z. and Omar, W. (2018), "Structural and material performance of geopolymer concrete: A review", Constr. Build. Mater., 186, 90-102. https://doi.org/10.1016/j.conbuildmat.2018.07.111. 
  35. Maraveas, C. and Vrakas, A.A. (2014), "Design of concrete tunnel linings for fire safety", Struct. Eng. Int., 24(3), 319-329. https://doi.org/10.2749/101686614X13830790993041. 
  36. Mawlod, A.O. and Bzeni, D.K.H. (2022), "Durability and fire resistance performance of slag based geopolymer composite", Proceedings of the Institution of Civil Engineers-Engineering Sustainability, 1-12. 
  37. Mawlod, A.O. and Bzeni, D.K.H.A. (2023), "Mechanical performance of fiber-reinforced slag-based geopolymer composite", Pract. Period. Struct. Des. Constr., 28(3), 4023031. https://doi.org/10.1061/PPSCFX.SCENG-1293. 
  38. Van Mier, J.G.M. (1986), "Multiaxial strain-softening of concrete. Part I: Fracture, materials and structures", RILEM, 19(111). 
  39. Mohammed, Z.A., Al-Jaberi, L.A. and Shubber, A.N. (2021), "Polypropylene fibers reinforced geopolymer concrete beams under static loading, Part 1: Under-reinforced section", AIP Conf. Proceed., 2372(1), 180010. https://doi.org/10.1063/5.0065392. 
  40. Naaman, A.E. (2008), "High performance fiber reinforced cement composites", Naaman AE. High-performance construction materials: Science and Applications, 91-153, Singapore. 
  41. Nazari, A., Bagheri, A., Sanjayan, J.G., Dao, M., Mallawa, C., Zannis, P. and Zumbo, S. (2019), "Thermal shock reactions of ordinary portland cement and geopolymer concrete: Microstructural and mechanical investigation", Constr. Build. Mater., 196, 492-498. https://doi.org/10.1016/j.conbuildmat.2018.11.098. 
  42. Nehdi, M.L., Abbas, S. and Soliman, A.M. (2015), "Exploratory study of ultra-high performance fiber reinforced concrete tunnel lining segments with varying steel fiber lengths and dosages", Eng. Struct., 101, 733-742. https://doi.org/10.1016/j.engstruct.2015.07.012. 
  43. Nilson, A.H. (1968), "Nonlinear analysis of reinforced concrete by the finite element method", J. Proceed., 757-766. 
  44. Di Prisco, M. and Felicetti, R. (2004), "On fatigue of plain and fibre-reinforced concrete ground slabs", BEFIB 04, 1195-1206. 
  45. Di Prisco, M., Plizzari, G. and Vandewalle, L. (2009), "Fibre reinforced concrete: New design perspectives", Mater. Struct., 42(9), 1261-1281. https://doi.org/10.1617/s11527-009-9529-4. 
  46. De Rivaz, B. (2008), "Steel fiber reinforced concrete (SFRC): The use of SFRC in precast segment for tunnelling", Water Energy Int., 65(3), 47-56. 
  47. Rokugo, K. (2008), Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composites with Multiple Fine Cracks (HPFRCC), Japan Society of Civil Engineers, Concrete Committee. 
  48. Sakkas, K., Nomikos, P., Sofianos, A. and Panias, D. (2013), "Slag based geopolymer for passive fire protection of tunnels", Underground, The Way to the Future, Informa UK Limited, 343-349. 
  49. Schnutgen, B. and Vandewalle, L. (2003), PRO 31: International RILEM Workshop on Test and Design Methods for Steel Fibre Reinforced Concrete-Background and Experiences, Vol. 31, RILEM Publications. 
  50. Sharmila, P. and Dhinakaran, G. (2015), "Strength and durability of ultra fine slag based high strength concrete", Struct. Eng. Mech., 55(3), 675-686. https://doi.org/10.12989/sem.2015.55.3.675. 
  51. Sheng, J. (1996), Micro-fiber Reinforced Cement-based Material System: Some Mechanical and Durability Considerations, Universite Laval. 
  52. Song, H. and Li, X. (2021), "An overview on the rheology, mechanical properties, durability, 3D printing, and microstructural performance of nanomaterials in cementitious composites", Mater., 14(11), 2950. https://doi.org/10.3390/ma14112950. 
  53. Standard, A. (2008), ASTM C109-Standard Test Method for Compressive Strength of Hydraulic Cement Mortars, ASTM International, West Conshohocken, PA. 
  54. Tue, N.V., Ma, J. and Orgass, M. (2008), "Influence of addition method of superplasticizer on the properties of fresh UHPC", Proceedings of the 2nd International Symposium on Ultra-High Performance Concrete, Kassel, Germany, 93-100. 
  55. Xie, C., Cao, M., Khan, M., Yin, H. and Guan, J. (2021), "Review on different testing methods and factors affecting fracture properties of fiber reinforced cementitious composites", Constr. Build. Mater., 273, 121766. https://doi.org/10.1016/j.conbuildmat.2020.121766. 
  56. Yu, J., Yao, J., Lin, X., Li, H., Lam, J.Y., Leung, C.K., ... & Shih, K. (2018), "Tensile performance of sustainable Strain-hardening cementitious composites with hybrid PVA and recycled PET fibers", Cement Concrete Res., 107, 110-123. https://doi.org/10.1016/j.cemconres.2018.02.013. 
  57. Yu, J., Chen, Y. and Leung, C.K.Y. (2019), "Mechanical performance of Strain-Hardening Cementitious Composites (SHCC) with hybrid polyvinyl alcohol and steel fibers", Compos. Struct., 226, 111198. https://doi.org/10.1016/j.compstruct.2019.111198. 
  58. Zhao, F.Q., Ni, W., Wang, H.J. and Liu, H.J. (2007), "Activated fly ash/slag blended cement", Resour. Conserv. Recyc., 52(2), 303-313. https://doi.org/10.1016/j.resconrec.2007.04.002. 
  59. Zhou, J.W., Zhao, F.H., Qi, Y.S. and Shi, W.C. (2013), "Nonlinear finite element analysis of the flexural reinforced concrete beam strengthened with CFRP sheets", Appl. Mech. Mater., 438, 467-471. https://doi.org/10.4028/www.scientific.net/AMM.438-439.467.