References
- Abbas, S., Soliman, A.M. and Nehdi, M.L. (2014), "Mechanical performance of reinforced concrete and steel fiber-reinforced concrete precast tunnel lining segments: A case study", ACI Mater. J., 111(5), 501-510. https://doi.org/10.14359/51687101
- Afroughsabet, V. and Ozbakkaloglu, T. (2015), "Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers", Constr. Build. Mater., 94, 73-82. https://doi.org/10.1016/j.conbuildmat.2015.06.051.
- Aisheh, Y.I.A., Atrushi, D.S., Akeed, M.H., Qaidi, S. and Tayeh, B.A. (2022), "Influence of polypropylene and steel fibers on the mechanical properties of ultra-high-performance fiberreinforced geopolymer concrete", Case Stud. Constr. Mater., 17, e01234. https://doi.org/10.1016/j.cscm.2022.e01234.
- Alves, L., Leklou, N., Casari, P. and de Barros, S. (2021), 'Fibermatrix bond strength by pull-out tests on slag-based geopolymer with embedded glass and carbon fibers", J. Adhes. Sci. Technol., 35(18), 2035-2045. https://doi.org/10.1080/01694243.2020.1870322.
- Alzeebaree, R., Mawlod, A.O., Mohammedameen, A. and Nis, A. (2021), "Using of recycled clay brick/fine soil to produce sodium hydroxide alkali activated mortars", Adv. Struct. Eng., 24(13), 2996-3009. https://doi.org/10.1177/13694332211015742.
- Amin, M., Zeyad, A.M., Tayeh, B.A. and Agwa, I.S. (2021), "Effect of high temperatures on mechanical, radiation attenuation and microstructure properties of heavyweight geopolymer concrete", Struct. Eng. Mech., 80(2), 181-199. https://doi.org/10.12989/sem.2021.80.2.181.
- ASTM C348-18 (2018), Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars, Standard Test Method for Measurement the Flaxural Tensile Strength of Mortar.
- Aygormez, Y., Canpolat, O., Al-mashhadani, M.M. and Uysal, M. (2020), "Elevated temperature, freezing-thawing and wettingdrying effects on polypropylene fiber reinforced metakaolin based geopolymer composites", Constr. Build. Mater., 235, 117502. https://doi.org/10.1016/j.conbuildmat.2019.117502.
- Banthia, N. et al. (2012), "Fiber-reinforced concrete in precast concrete applications: Research leads to innovative products", PCI J., 57(3), 33-46. https://doi.org/10.15554/pcij.06012012.33.46
- Barwart, C., Romualdi, P. and Barioffi, A. (2013), "Headrace tunnel of the El Alto hydropower project in Panama/Druckstollen des Wasserkraftprojekts El Alto in Panama", Geomech. Tunnel., 6(4), 301-311. https://doi.org/10.1002/geot.201300019.
- Beno, J. and Hilar, M. (2013), "Steel fibre reinforced concrete for tunnel lining-verification by extensive laboratory testing and numerical modelling", Acta Polytechnica, 53(4), 11.
- Behfarnia, K. and Rostami, M. (2017), "Mechanical properties and durability of fiber reinforced alkali activated slag concrete", J. Mater. Civil Eng., 29(12), 4017231. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002073.
- Bell, J.L., Driemeyer, P.E. and Kriven, W.M. (2009a), "Formation of ceramics from metakaolin-based geopolymers: Part I-Csbased geopolymer", J. Am. Ceram. Soc., 92(1), 1-8. https://doi.org/10.1111/j.1551-2916.2008.02790.x.
- Bell, J.L., Driemeyer, P.E. and Kriven, W.M. (2009b), "Formation of ceramics from metakaolin-based geopolymers. Part II: Kbased geopolymer", J. Am. Ceram. Soc., 92(3), 607-615. https://doi.org/10.1111/j.1551-2916.2008.02922.x.
- Britto, J. and Muthuraj, M.P. (2019), "Prediction of compressive strength of bacteria incorporated geopolymer concrete by using ANN and MARS", Struct. Eng. Mech., 70(6), 671-681. https://doi.org/10.12989/sem.2019.70.6.671.
- Buratti, N., Mazzotti, C. and Savoia, M. (2011), "Post-cracking behaviour of steel and macro-synthetic fibre-reinforced concretes", Constr. Build. Mater., 25(5), 2713-2722. https://doi.org/10.1016/j.conbuildmat.2010.12.022.
- Caratelli, A., Meda, A., Rinaldi, Z. and Spagnuolo, S. (2016), "Precast tunnel segments with GFRP reinforcement", Tunnel. Undergr. Space Technol., 60, 10-20. https://doi.org/10.1016/j.tust.2016.07.011.
- Chinchillas-Chinchillas, M.J., Orozco-Carmona, V.M., Gaxiola, A., Alvarado-Beltran, C.G., Pellegrini-Cervantes, M.J., Baldenebro-Lopez, F.J. and Castro-Beltran, A. (2019) "Evaluation of the mechanical properties, durability and drying shrinkage of the mortar reinforced with polyacrylonitrile microfibers", Constr. Build. Mater., 210, 32-39. https://doi.org/10.1016/j.conbuildmat.2019.03.178.
- Dean, A., Young, D.J. and Kramer, G.J.E. (2006), "The use and performance of precast concrete tunnel linings in seismic areas", IAEG2006.
- Gowripalan, N., Sirivivatnanon, V. and Lim, C.C. (2000), "Chloride diffusivity of concrete cracked in flexure", Cement Concrete Res., 30(5), 725-730. https://doi.org/10.1016/S0008-8846(00)00216-7.
- Han, K., Ju, J.W., Zhang, H., Zhu, Y., Chang, T.S. and Wang, Z. (2021), "Mechanical response analysis of self-healing cementitious composites with microcapsules subjected to tensile loading based on a micromechanical damage-healing model", Constr. Build. Mater., 280, 122251. https://doi.org/10.1016/j.conbuildmat.2021.122251.
- Han, K., Ju, J.W.W., Zhu, Y., Zhang, H., Chang, T.S. and Wang, Z. (2021), "Mechanical responses of microencapsulated selfhealing cementitious composites under compressive loading based on a micromechanical damage-healing model", Int. J. Damage Mech., 30(10), 1475-1496. https://doi.org/10.1177/10567895211011239.
- Han, K., Zhang, D., Chen, X., Su, D., Ju, J.W.W., Lin, X.T. and Cui, H. (2023), "A resilience assessment framework for existing underground structures under adjacent construction disturbance", Tunnel. Undergr. Space Technol., 141, 105339. https://doi.org/10.1016/j.tust.2023.105339.
- Han, K., Ju, J.W.W., Zhang, C., Su, D., Cui, H., Lin, X.T. and Chen, X. (2023), "A resilience assessment framework for microencapsulated self-healing cementitious composites based on a micromechanical damage-healing model", Int. J. Damage Mech., 10567895231197236. https://doi.org/10.1177/10567895231197237.
- He, P., Jia, D., Lin, T., Wang, M. and Zhou, Y. (2010), "Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites", Ceram. Int., 36(4), 1447-1453. https://doi.org/10.1016/j.ceramint.2010.02.012.
- Hordijk, D.A. (1991), "Local approach to fatigue of concrete, doctor dissertation", Delft University of Technology.
- Kasper, T. et al. (2008), "Lining design for the district heating tunnel in Copenhagen with steel fibre reinforced concrete segments", Tunnel. Undergr. Space Technol., 23(5), 574-587. https://doi.org/10.1016/j.tust.2007.11.001.
- Khaliq, W. and Kodur, V. (2018), "Effectiveness of polypropylene and steel fibers in enhancing fire resistance of high-strength concrete columns", J. Struct. Eng., 144(3), 4017224. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001981.
- Kolmar, W. (1986), "Beschreibung der kraftuebertragung uber risse in nichtlinearen finite-element-berechnungen von stahlbetontrag-werken", Dissertation, TH Darmstadt.
- Koniki, S., Kasagani, H., Prathipati, S.R.R.T. and Paluri, Y. (2021), "Mechanical behavior of triple-blended hybrid fiberreinforced concrete: An experimental and numerical study", Innov. Infrastr. Solut., 6(3), 1-14. https://doi.org/10.1007/s41062-021-00526-9.
- Kwek, S.Y., Awang, H. and Cheah, C.B. (2021), "Influence of liquid-to-solid and alkaline activator (sodium silicate to sodium hydroxide) ratios on fresh and hardened properties of alkaliactivated palm oil fuel ash geopolymer", Mater., 14(15), 4253. https://doi.org/10.3390/ma14154253.
- Li, V.C., Wang, S. and Wu, C. (2001), "Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC)", Mater. J., 98(6), 483-492. https://doi.org/10.14359/10851
- Luhar, S., Nicolaides, D. and Luhar, I. (2021), "Fire resistance behaviour of geopolymer concrete: An overview", Build., 11(3), 82. https://doi.org/10.3390/buildings11030082.
- Ma, C.K., Awang, A.Z. and Omar, W. (2018), "Structural and material performance of geopolymer concrete: A review", Constr. Build. Mater., 186, 90-102. https://doi.org/10.1016/j.conbuildmat.2018.07.111.
- Maraveas, C. and Vrakas, A.A. (2014), "Design of concrete tunnel linings for fire safety", Struct. Eng. Int., 24(3), 319-329. https://doi.org/10.2749/101686614X13830790993041.
- Mawlod, A.O. and Bzeni, D.K.H. (2022), "Durability and fire resistance performance of slag based geopolymer composite", Proceedings of the Institution of Civil Engineers-Engineering Sustainability, 1-12.
- Mawlod, A.O. and Bzeni, D.K.H.A. (2023), "Mechanical performance of fiber-reinforced slag-based geopolymer composite", Pract. Period. Struct. Des. Constr., 28(3), 4023031. https://doi.org/10.1061/PPSCFX.SCENG-1293.
- Van Mier, J.G.M. (1986), "Multiaxial strain-softening of concrete. Part I: Fracture, materials and structures", RILEM, 19(111).
- Mohammed, Z.A., Al-Jaberi, L.A. and Shubber, A.N. (2021), "Polypropylene fibers reinforced geopolymer concrete beams under static loading, Part 1: Under-reinforced section", AIP Conf. Proceed., 2372(1), 180010. https://doi.org/10.1063/5.0065392.
- Naaman, A.E. (2008), "High performance fiber reinforced cement composites", Naaman AE. High-performance construction materials: Science and Applications, 91-153, Singapore.
- Nazari, A., Bagheri, A., Sanjayan, J.G., Dao, M., Mallawa, C., Zannis, P. and Zumbo, S. (2019), "Thermal shock reactions of ordinary portland cement and geopolymer concrete: Microstructural and mechanical investigation", Constr. Build. Mater., 196, 492-498. https://doi.org/10.1016/j.conbuildmat.2018.11.098.
- Nehdi, M.L., Abbas, S. and Soliman, A.M. (2015), "Exploratory study of ultra-high performance fiber reinforced concrete tunnel lining segments with varying steel fiber lengths and dosages", Eng. Struct., 101, 733-742. https://doi.org/10.1016/j.engstruct.2015.07.012.
- Nilson, A.H. (1968), "Nonlinear analysis of reinforced concrete by the finite element method", J. Proceed., 757-766.
- Di Prisco, M. and Felicetti, R. (2004), "On fatigue of plain and fibre-reinforced concrete ground slabs", BEFIB 04, 1195-1206.
- Di Prisco, M., Plizzari, G. and Vandewalle, L. (2009), "Fibre reinforced concrete: New design perspectives", Mater. Struct., 42(9), 1261-1281. https://doi.org/10.1617/s11527-009-9529-4.
- De Rivaz, B. (2008), "Steel fiber reinforced concrete (SFRC): The use of SFRC in precast segment for tunnelling", Water Energy Int., 65(3), 47-56.
- Rokugo, K. (2008), Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composites with Multiple Fine Cracks (HPFRCC), Japan Society of Civil Engineers, Concrete Committee.
- Sakkas, K., Nomikos, P., Sofianos, A. and Panias, D. (2013), "Slag based geopolymer for passive fire protection of tunnels", Underground, The Way to the Future, Informa UK Limited, 343-349.
- Schnutgen, B. and Vandewalle, L. (2003), PRO 31: International RILEM Workshop on Test and Design Methods for Steel Fibre Reinforced Concrete-Background and Experiences, Vol. 31, RILEM Publications.
- Sharmila, P. and Dhinakaran, G. (2015), "Strength and durability of ultra fine slag based high strength concrete", Struct. Eng. Mech., 55(3), 675-686. https://doi.org/10.12989/sem.2015.55.3.675.
- Sheng, J. (1996), Micro-fiber Reinforced Cement-based Material System: Some Mechanical and Durability Considerations, Universite Laval.
- Song, H. and Li, X. (2021), "An overview on the rheology, mechanical properties, durability, 3D printing, and microstructural performance of nanomaterials in cementitious composites", Mater., 14(11), 2950. https://doi.org/10.3390/ma14112950.
- Standard, A. (2008), ASTM C109-Standard Test Method for Compressive Strength of Hydraulic Cement Mortars, ASTM International, West Conshohocken, PA.
- Tue, N.V., Ma, J. and Orgass, M. (2008), "Influence of addition method of superplasticizer on the properties of fresh UHPC", Proceedings of the 2nd International Symposium on Ultra-High Performance Concrete, Kassel, Germany, 93-100.
- Xie, C., Cao, M., Khan, M., Yin, H. and Guan, J. (2021), "Review on different testing methods and factors affecting fracture properties of fiber reinforced cementitious composites", Constr. Build. Mater., 273, 121766. https://doi.org/10.1016/j.conbuildmat.2020.121766.
- Yu, J., Yao, J., Lin, X., Li, H., Lam, J.Y., Leung, C.K., ... & Shih, K. (2018), "Tensile performance of sustainable Strain-hardening cementitious composites with hybrid PVA and recycled PET fibers", Cement Concrete Res., 107, 110-123. https://doi.org/10.1016/j.cemconres.2018.02.013.
- Yu, J., Chen, Y. and Leung, C.K.Y. (2019), "Mechanical performance of Strain-Hardening Cementitious Composites (SHCC) with hybrid polyvinyl alcohol and steel fibers", Compos. Struct., 226, 111198. https://doi.org/10.1016/j.compstruct.2019.111198.
- Zhao, F.Q., Ni, W., Wang, H.J. and Liu, H.J. (2007), "Activated fly ash/slag blended cement", Resour. Conserv. Recyc., 52(2), 303-313. https://doi.org/10.1016/j.resconrec.2007.04.002.
- Zhou, J.W., Zhao, F.H., Qi, Y.S. and Shi, W.C. (2013), "Nonlinear finite element analysis of the flexural reinforced concrete beam strengthened with CFRP sheets", Appl. Mech. Mater., 438, 467-471. https://doi.org/10.4028/www.scientific.net/AMM.438-439.467.