DOI QR코드

DOI QR Code

Finite element analysis of ratcheting on beam under bending-bending loading conditions

  • Sk. Tahmid Muhatashin Fuyad (Department of Mechanical Engineering, Khulna University of Engineering & Technology) ;
  • Md Abdullah Al Bari (Department of Mechanical Engineering, Khulna University of Engineering & Technology) ;
  • Md. Makfidunnabi (Department of Mechanical Engineering, Khulna University of Engineering & Technology) ;
  • H.M. Zulqar Nain (Department of Nuclear Engineering, University of Dhaka) ;
  • Mehmet Emin Ozdemir (Department of Civil Engineering, Cankiri Karatekin University) ;
  • Murat Yaylaci (Department of Civil Engineering, Recep Tayyip Erdogan University)
  • 투고 : 2022.11.03
  • 심사 : 2023.12.08
  • 발행 : 2024.01.10

초록

Ratcheting is the cyclic buildup of inelastic strain on a structure resulting from a combination of primary and secondary cyclic stress. It can lead to excessive plastic deformation, incremental collapse, or fatigue. Ratcheting has been numerically investigated on a cantilever beam, considering the current study's primary and secondary bending loads. In addition, the effect of input frequency on the onset of ratcheting has been investigated. The non-linear dynamic elastic-plastic approach has been utilized. Analogous to Yamashita's bending-bending ratchet diagram, a non-dimensional ratchet diagram with a frequency effect is proposed. The result presents that the secondary stress values fall sequentially with the increase of primary stress values. Moreover, a displacement amplification factor graph is also established to explain the effect of frequency on ratchet occurrence conditions. In terms of frequency effect, it has been observed that the lower frequency (0.25 times the natural frequency) was more detrimental for ratchet occurrence conditions than the higher frequency (2 times the natural frequency) due to the effect of dynamic displacement. Finally, the effect of material modeling of ratcheting behavior on a beam is shown using different hardening coefficients of kinematic hardening material modeling.

키워드

참고문헌

  1. ABAQUS (2014), Analysis User's Manual, Version 6.14, Dassault Systemes Simulia, Inc. 
  2. Abd-Elwahed, M.S., Khashaba, U.A., Ahmed, K.I., Eltaher, M.A., Najjar, I., Melaibari, A. and Abdraboh, A.M. (2021), "Experimental and numerical FEM of woven GFRP composites during drilling", Struct. Eng. Mech., 80(5), 503-522. https://doi.org/10.12989/sem.2021.80.5.503. 
  3. ASME (2007), American Society of Mechanical Engineers, Boiler A, Code PV, Section VIII Division I, Appendix 2. 
  4. Bari, M.A.A., Sakemi, R. and Kasahara, N. (2017). "Failure mode map of pipes under dynamic loadings", Pressure Vessels and Piping Conference, 57984, V005T11A025. 
  5. Bari, M.A.A., Sakemi, R., Katsura, Y. and Kasahara, N. (2018), "Proposal of failure mode map under dynamic loadingratcheting and collapse", ASME. J. Press. Ves. Technol., 140(5), 051202. https://doi.org/10.1115/1.4040892. 
  6. Bari, M.A.A., Sakemi, R., Sato, T. and Kasahara, N. (2017), "Numerical and experimental study on structural failure modes under seismic loading", Transactions SMiRT-24, August. 
  7. Bree, J. (1967), "Elastic-plastic behaviour of thin tubes subjected to internal pressure and intermittent high-heat fluxes with application to fast-nuclear-reactor fuel elements", J. Strain Anal. Eng. Des., 2(3), 226-238. https://doi.org/10.1243/03093247v023226. 
  8. Burgreen, D. (1968), "Structural growth induced by thermal cycling", ASME. J. Basic Eng., 90(4), 469-475. https://doi.org/10.1115/1.3605168. 
  9. Chen, X. and Kim, K. (2003), "Modeling of ratcheting behavior under multiaxial cyclic loading", Acta Mechanica, 163, 9-23. https://doi.org/10.1007/s00707-003-1017-2. 
  10. DarAssi, M. (2021), "Convective stability of CO2 sequestration in a porous medium", Nonlin. Dyn. Syst. Theory, 21(2), 179-192. 
  11. DarAssi, M. and Hadji, L. (2014), "Analysis of the interplay between sedimentation and thermophoresis in the presence of convection in colloidal suspensions", Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting, 46247, V01DT32A001. 
  12. DeGrassi, G., Hofmayer, C., Murphy, A., Suzuki, K. and Namita, Y. (2003), "BNL nonlinear pre-test seismic analysis for the NUPEC ultimate strength piping test program (K255)", 17th Int. Conf. Struct. Mech. React. Technol., 1, 2491-2498. 
  13. Dong, Y., Zhang, Z. and He, X. (2020), "Microscopic substructures of stainless steel 304 undergoing a uniaxial ratcheting deformation", Acta Mechanica, 231, 4919-931. https://doi.org/10.1007/s00707-020-02804-6. 
  14. Guvercin, Y., Abdioglu, A.A., Dizdar, A., Uzun Yaylaci, E. and Yaylaci, M. (2022a), "Suture button fixation method used in the treatment of syndesmosis injury: A biomechanical analysis of the effect of the placement of the button on the distal tibiofibular joint in the mid-stance phase with finite elements method", Injury, 53(7), 2437-2445. https://doi.org/10.1016/j.injury.2022.05.037. 
  15. Guvercin, Y., Yaylaci, M., Dizdar, A., Kanat, A., Uzun Yaylaci, E., Ay, S., Abdioglu, A.A. and Sen, A. (2022b), "Biomechanical analysis of odontoid and transverse atlantal ligament in humans with ponticulus posticus variation under different loading conditions: Finite element study", Injury, 53(12), 3879-3886. https://doi.org/10.1016/j.injury.2022.10.003. 
  16. Guvercin, Y., Yaylaci, M., Olmez, H., Uzun Yaylaci, E., Ozdemir M.E. and Dizdar, A. (2022c), "Finite element analysis of the mechanical behavior of the different angle hip femoral stem", Biomater. Biomech. Bioeng., 6(1), 29-46. https://doi.org/10.12989/bme.2022.6.1.029. 
  17. Hadji, L. and DarAssi, M. (2014), "Influence of sedimentation on the threshold for Soret-driven convection in colloidal suspensions", Phys. Rev. E. Stat. Nonlin. Soft Matter. Phys., 89(1), 013014. https://doi.org/10.1103/PhysRevE.89.013014. 
  18. Hopkins, H. and Wang, A. (1955), "Load-carrying capacities for circular plates of perfectly-plastic material with arbitrary yield condition", J. Mech. Phys. Solid., 3(2), 117-129. https://doi.org/10.1016/0022-5096(55)90055-7. 
  19. Hyde, T.H. and Webster, J.J. (1982a), "Experimental theramal ratchetting data for a component with a stress concentration", J. Strain Anal. Eng. Des., 17(4), 253-261. https://doi.org/10.1243/03093247V174253. 
  20. Hyde, T.H. and Webster, J.J. (1982b), "Predicting the thermal ratchetting and creep behaviour of a component with a stress concentration", J. Strain Anal. Eng. Des., 17(4), 263-268. https://doi.org/10.1243/03093247V174263. 
  21. Ichiro, I. (2004), "Some collapse tests for the large scale models of the nuclear reactor facilities by shaking table", J. JPN Assoc. Earthq. Eng., 4(3), 465-471. https://doi.org/10.5610/jaee.4.3_465. 
  22. Ishiwata, M., Tai, K. and Fujiwaka, T. (2017), "Seismic proving test of ultimate piping strength (test results on piping component and simplified piping system", ASME Pressure Vessels and Piping Conference, 46563, 99-106. 
  23. Kang, G., Zhang, J., Sun, Y. and Kan, Q. (2007), "Uniaxial timedependent ratcheting of ss304 stainless steel at high temperatures", J. Iron. Steel Res., 14(1), 53-59. https://doi.org/10.1016/S1006-706X(07)60012-0. 
  24. Kasahara, N., Bari, M.A.A. and Sakemi, R. (2020), "Failure modes of piping under seismic loads which have both load and displacement controlled characteristics", Int. J. Press. Ves. Pip., 179, 103938. https://doi.org/10.1016/j.ijpvp.2019.103938. 
  25. Lazzari, P.M., Filho, A.C., Lazzari, B.M., Pacheco, A.R. and Gomes, R.R.S. (2019), "Numerical simulation of the constructive steps of a cable-stayed bridge using ANSYS", Struct. Eng. Mech., 69(3), 269-281. https://doi.org/10.12989/sem.2019.69.3.269. 
  26. Lei, W., Liu, C., Qin, X. and Chen, R. (2018) "Iterative coupling of precise integration FEM and TD-BEM for elastodynamic analysis", Struct. Eng. Mech., 67(4), 317-326. https://doi.org/10.12989/sem.2018.67.4.317. 
  27. Moulgada, A., Zagane, M.E.S., Yaylaci, M., Djafar, A.K., Abderahmane, S., Ozturk, S. and Uzun Yaylaci, E. (2023), "Comparative study by the finite element method of three activities of a wearer of total hip prosthesis during the postoperative period", Struct. Eng. Mech., 87(6), 575-583. https://doi.org/10.12989/sem.2023.87.6.575. 
  28. Mulcahy, T.M. (1974), "An assessment of kinematic hardening thermal ratcheting", ASME. J. Eng. Mater. Technol., 96(3), 214-221. https://doi.org/10.1115/1.3443213. 
  29. Nakamura, I. and Kasahara, N. (2016), "Trial model tests with simulation material to obtain failure modes of pipes under excessive seismic loads", Pressure Vessels and Piping Conference, 50466, V008T08A019. 
  30. Nakamura, I., Demachi, K. and Kasahara, N. (2015), "An experimental investigation on failure modes of piping components under excessive seismic load", Transactions, SMiRT-23, Manchester, United Kingdom, August. 
  31. Nie, J., DeGrassi, G., Hofmayer, C.H. and Ali, S.A. (2008), "Nonlinear seismic correlation analysis of the jnes/nupec largescale piping system tests", Proceedings of the ASME 2008 Pressure Vessels and Piping Conference, 8, 275-287. 
  32. Shariati, M., Hatami, H., Torabi, H. and Epakchi, H.R. (2012), "Experimental and numerical investigations on the ratcheting characteristics of cylindrical shell under cyclic axial loading", Struct. Eng. Mech., 44(6), 753-762. https://doi.org/10.12989/sem.2012.44.6.753. 
  33. Singh, J. and Patel, B.P. (2015), "Ratcheting analysis of joined conical cylindrical shells", Struct. Eng. Mech., 55(5), 913-929. https://doi.org/10.12989/sem.2015.55.5.913. 
  34. Sun, T.C., DarAssi, M., Bilal, M. and Khan, M.A. (2022), "The study of Darcy-Forchheimer hybrid nanofluid flow with the thermal slip and dissipation effect using parametric continuation approach over a rotating disk", Wave. Random Complex Media, 1-14. https://doi.org/10.1080/17455030.2022.2072537. 
  35. Suzuki, K., Namita, Y., Abe, H. and Ichihashi, I. (2003a), "Seismic proving test of ultimate piping strength (status of design method confirmation test)", Trans. 17th Int. Conf. Struct. Mech. React. Technol. (SMiRT 17), 1-8. 
  36. Suzuki, K., Namita, Y., Abe, H. and Ichihashi, I. (2003b), "Seismic proving test of ultimate piping strength (current status of preliminary tests)", Trans. 17th Int. Conf. Struct. Mech. React. Tech. (SMiRT 17), No. 1. 
  37. Tagart, S.W., Tang, Y., Guzy, D.J. and Ranganath, S. (1990), "Piping dynamic reliability and code rule change recommendations", Nucl. Eng. Des., 123(2-3), 373-385. https://doi.org/10.1016/0029-5493(90)90258-Y. 
  38. Teil (1995), Auslegung, Konstruktion und Berchnung and Regeladerungsentwurf "KemtecllIlischer AIlsschu b (KTA), Sicherheitstechnische Regel des KTA". 
  39. Uzun Yaylaci, E., Oner, E., Yaylaci, M., Ozdemir, M.E., Abushattal, A. and Birinci, A. (2022), "Application of artificial neural networks in the analysis of the continuous contact problem", Struct. Eng. Mech., 84(1), 35-48. https://doi.org/10.12989/sem.2022.84.1.035. 
  40. Uzun Yaylaci, E., Yaylaci, M., Ozdemir, M.E., Terzi, M. and Ozturk, S. (2023), "Analyzing the mechano-bactericidal effect of nano-patterned surfaces by finite element method and verification with artificial neural networks", Adv. Nano Res., 15(2), 165-174. https://doi.org/10.12989/anr.2023.15.2.165. 
  41. Wang, L., Chen, G., Zhu, J., Sun, X., Mei, Y., Ling, X. and Chen, X. (2014), "Bending ratcheting behavior of pressurized straight Z2CND18.12N stainless steel pipe", Struct. Eng. Mech., 52(6), 1135-1156. https://doi.org/10.12989/sem.2014.52.6.1135. 
  42. Yamashita, T., Tsukimori, K. and Nagata, T. (1992), "Development of the simplified evaluation method for ratchetting due to primary bending stress and secondary membrane stress", Commercial Property, PNC ZN9410. 92-139. 
  43. Yamashita, T., Tsukimori, K., Nakamura, M., Iwata, K. and Imazu, A. (1990), "A simplified method of evaluating ratcheting in bellows and a test of its validation", Int. J. Press. Ves. Pip., 42(3), 263-285. https://doi.org/10.1016/0308-0161(90)90027-F. 
  44. Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org 10.12989/sem.2016.57.6.1143. 
  45. Yaylaci, M. (2022), "Simulate of edge and an internal crack problem and estimation of stress intensity factor through finite element method", Adv. Nano Res., 12(4), 405-414. https://doi.org/10.12989/anr.2022.12.4.405. 
  46. Yaylaci, M., Abanoz, M., Uzun Yaylaci, E., Olmez, H., Sekban, M.D. and Birinci, A. (2022b), "The contact problem of the functionally graded layer resting on rigid foundation pressed via rigid punch", Steel Compos. Struct., 43(5), 661-672. https://doi.org/10.12989/scs.2022.43.5.661. 
  47. Yaylaci, M., Sengul Sabano, B., Ozdemir, M.E. and Birinci, A. (2022a), "Solving the contact problem of functionally graded layers resting on a homogeneous half-plane and pressed with a uniformly distributed load by analytical and numerical methods", Struct. Eng. Mech., 82(3), 401-416. https://doi.org/10.12989/sem.2022.82.3.401. 
  48. Yaylaci, M., Terzi, C. and Avcar, M. (2019), "Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane", Struct. Eng. Mech., 72(6), 775. https://doi.org/10.12989/sem.2019.72.6.775. 
  49. Yaylaci, M., Yayli, M., Uzun Yaylaci, E., Olmez, H. and Birinci, A. (2021), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., 78(5), 585-597. https://doi.org/10.12989/sem.2021.78.5.585. 
  50. Zagane, M.E.S, Moulgada, A., Yaylaci, M., Abderahmen, S., Ozdemir, M. and Uzun Yaylaci, E. (2023), "Numerical simulation of the total hip prosthesis under static and dynamic loading (for three activities)", Struct. Eng. Mech., 86(5), 635-645. https://doi.org/10.12989/sem.2023.86.5.635. 
  51. Zhang, Z., Chen, X. and Wang, Y. (2010), "Uniaxial ratcheting behavior of polytetrafluoroethylene at elevated temperature", Polym. Test., 29(3), 352-357. https://doi.org/10.1016/j.polymertesting.2010.01.001. 
  52. Zheng, X.T., Wu, K.W., Wang, W., Yu, J.Y., Xu, J.M. and Ma, L.W. (2017), "Low cycle fatigue and ratcheting behavior of 35CrMo structural steel at elevated temperature", Nucl. Eng. Des., 314, 285-292. https://doi.org/10.1016/j.nucengdes.2017.01.016.