참고문헌
- Abdelrahman, A.A., Esen, I., Ozarpa, C. and Eltaher, M.A. (2021a), "Dynamics of perforated nanobeams subject to moving mass using the nonlocal strain gradient theory", Appl. Math. Model., 96, 215-235. https://doi.org/10.1016/j.apm.2021.03.008.
- Abdelrahman, A.A., Esen, I., Ozarpa, C., Shaltout, R., Eltaher, M.A. and Assie, A.E. (2021), "Dynamics of perforated higher order nanobeams subject to moving load using the nonlocal strain gradient theory", Smart Struct. Syst., 28(4), 515-533. https://doi.org/10.12989/sss.2021.28.4.515.
- Abrate, S. (2006), "Free vibration, buckling, and static deflections of functionally graded plates", Compos. Sci. Technol., 66, 2383- 2394. http://doi.org/10.1016/j.compscitech.2006.02.032.
- Alazwari, M.A., Esen, I., Abdelrahman, A.A., Abdraboh, A.M. and Eltaher, M.A. (2022), "Dynamic analysis of functionally graded (FG) nonlocal strain gradient nanobeams under thermomagnetic fields and moving load", Adv. Nano Res., 12, 231-251. https://doi.org/10.12989/anr.2022.12.3.231.
- Almitani, K.H., Eltaher, M.A., Abdelrahman, A.A. and Abd-ElMottaleb, H.E. (2021), "Finite element based stress and vibration analysis of axially functionally graded rotating beams. Struct. Eng. Mech., 79(1), 23-33. https://doi.org/10.12989/sem.2021.79.1.023.
- Belarbi, M.O., Daikh, A.A., Garg, A., Merzouki, T., Chalak, H.D. and Hirane, H. (2021), "Nonlocal finite element model for the bending and buckling analysis of functionally graded nanobeams using a novel shear deformation theory", Compos. Struct., 264, 113712. https://doi.org/10.1016/j.compstruct.2021.113712.
- Bert, C.W. (1973), "Simplified analysis of static shear factors for beams of nonhomogeneous cross-section", J. Compos. Mater., 7, 525. https://doi.org/10.1177/002199837300700410.
- Bert, C.W. and Gordaninejad, F. (1983), "Transverse shear effects in bimodular composite laminates", J. Compos. Mater., 17, 282. https://doi.org/10.1007/978-3-642-58092-5_11.
- Berthelot, J.M. (1992), Materiaux Composites, Comportement Mecanique et Analyse des Structures, Masson, Paris.
- Bever, M.B. and Duwez, P.F. (1972), "Gradients in composite materials", Mater. Sci. Eng., 10, 1-8. https://doi.org/10.1016/0025-5416(72)90059-6.
- Birman, V. and Bert, C.W. (2002), "On the choice of shear correction factor in sandwich structures", J. Sandw. Struct. Mater., 4, 83. https://doi.org/10.1177/1099636202004001180.
- Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133, 54-61. https://doi.org/10.1016/j.compstruct.2015.07.052.
- Daikh, A.A., Belarbi, M.O., Ahmed, D., Houari, M.S.A., Avcar, M., Tounsi, A. and Eltaher, M.A. (2023), "Static analysis of functionally graded plate structures resting on variable elastic foundation under various boundary conditions", Acta Mechanica, 234(2), 775-806. https://doi.org/10.1007/s00707-022-03405-1.
- Daikh, A.A., Drai, A., Houari, M.S.A. and Eltaher, M.A. (2020), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Steel Compos. Struct., 36(6), 643-656. https://doi.org/10.12989/scs.2020.36.6.643.
- Daikh, A.A., Houari, M.S.A., Belarbi, M.O., Chakraverty, S. and Eltaher, M.A. (2022), "Analysis of axially temperaturedependent functionally graded carbon nanotube reinforced composite plates", Eng. Comput., 38(Suppl 3), 2533-2554. https://doi.org/10.1007/s00366-021-01413-8.
- Demirhan, P.A. and Taskin, V. (2019), "Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach", Compos. B Eng., 160, 661-676. http://doi.org/10.1016/j.compositesb.2018.12.020.
- Efraim, E. and Eisenberger, M. (2007), "Exact vibration analysis of variable thickness thick annular isotropic and FGM plates", J. Sound Vib., 299, 720-738. http://doi.org/10.1016/j.jsv.2006.06.068.
- Esen, I. (2013), "A new finite element for transverse vibration of rectangular thin plates under a moving mass", Finite Elem. Anal. Des., 66, 26-35. https://doi.org/10.1016/j.finel.2012.11.005.
- Esen, I. (2015), "A new FEM procedure for transverse and longitudinal vibration analysis of thin rectangular plates subjected to a variable velocity moving load along an arbitrary trajectory", Lat. Am. J. Solid. Struct., 12, 808-830. https://doi.org/10.1590/1679-78251525.
- Esen, I. and Ozmen, R. (2022), "Thermal vibration and buckling of magneto-electro-elastic functionally graded porous nanoplates using nonlocal strain gradient elasticity", Compos. Struct., 296, 115878. https://doi.org/10.1016/j.compstruct.2022.115878.
- Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2020), "Dynamics analysis of timoshenko perforated microbeams under moving loads", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01212-7.
- Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2021), "On vibration of sigmoid/symmetric functionally graded nonlocal strain gradient nanobeams under moving load", Int. J. Mech. Mater. Des., 17(3), 721-742. https://doi.org/10.1007/s10999-021-09555-9.
- Esen, I., Alazwari, M.A., Eltaher, M.A. and Abdelrahman, A.A. (2022), "Dynamic response of FG porous nanobeams subjected thermal and magnetic fields under moving load", Steel Compos. Struct., 42(6), 805-826. https://doi.org/10.12989/scs.2022.42.6.805.
- Ferreira, A.J.M., Batra, R.C., Roque, C.M.C., Qian, L.F. and Jorge, R.M.N. (2006), "Natural frequencies of functionally graded plates by a meshless method", Compos. Struct., 75, 593-600. https://doi.org/10.1016/j.compstruct.2006.04.018.
- Goetzel, C.G. and Lavendel, H.W. (1964), "Multiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi cell finite element method", Int. J. Solid. Struct., 32, 149-162. https://doi.org/10.1016/0020-7683(94)00097-G.
- Hirane, H., Belarbi, M.O., Houari, M.S.A. and Tounsi, A. (2021), "On the layerwise finite element formulation for static and free vibration analysis of functionally graded sandwich plates", Eng. Comput., 1-29. https://doi.org/10.1007/s00366-020-01250-1.
- Houari, M.S.A., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S.R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameterr", Steel Compos. Struct., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013.
- Koc, M.A., Eroglu, M. and Esen, I. (2022), "Dynamic analysis of high-speed train moving on perforated Timoshenko and EulerBernoulli beams", Int. J. Mech. Mater. Des., 18(4), 893-917. https://doi.org/10.1007/s10999-022-09610-z.
- Koizumi, M. (1997), "FGM activities in Japan", Compos Part B, 28, 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
- Madabhusi-Raman, P. and Davalos, J.F. (1996), "Static shear correction factor for laminated rectangular beams", Compos. Part B: Eng., 27, 285-293. https://doi.org/10.1016/1359-8368(95)00014-3.
- Menaa, R., Tounsi, A., Mouaici, F., Mechab, I., Zidi, M. and Bedia, A. (2012), "Analytical solutions for static shear correction factor of functionally graded rectangular beams", Mech. Adv. Mater. Struct., 19, 641-652. https://doi.org/10.1080/15376494.2011.581409.
- Merdaci, S., Mostefa, A.H., Beldjelili, Y., Merazi, M., Boutaleb, S. and Hellal, H. (2019), "Free vibration analysis of functionally", Int. J. Eng. Tech. Res., 8(03), https://doi.org/10.17577/IJERTV8IS030098.
- Merzouki, T., Ahmed, H.M.S., Bessaim, A., Haboussi, M., Dimitri, R. and Tornabene, F. (2022b), "Bending analysis of functionally graded porous nanocomposite beams based on a non-local strain gradient theory", Math. Mech. Solid., 27(1), 66-92. https://doi.org/10.1177/10812865211011759.
- Merzouki, T., Houari, M.S.A., Haboussi, M., Bessaim, A. and Ganapathi, M. (2022a), "Nonlocal strain gradient finite element analysis of nanobeams using two-variable trigonometric shear deformation theory", Eng. Comput., 38(Suppl 1), 647-665. https://doi.org/10.1007/s00366-020-01156-y.
- Mouaici, F., Benyoucef, S., Ait Atmane, H. and Tounsi, A. (2016), "Effect of porosity on vibrational characteristics of nonhomogeneous plates using hyperbolic shear deformation theory", Wind Struct., 22(4), 429-454. https://doi.org/10.12989/was.2016.22.4.429.
- Ngoc, N.M., Hoang, V.N. and Lee, D. (2022), "Concurrent topology optimization of coated structure for non-homogeneous materials under buckling criteria", Eng. Comput., 38(6), 5635-5656. https://doi.org/10.1007/s00366-022-01718-2.
- Nguyen, M.N., Hoang, V.N. and Lee, D. (2023c), "Multiscale topology optimization with stress, buckling and dynamic constraints using adaptive geometric components", Thin Wall. Struct., 183, 110405. https://doi.org/10.1016/j.tws.2022.110405.
- Nguyen, M.N., Jung, W.S., Shin, S.M., Kang, J.W. and Lee, D.K. (2023a), "Topology optimization of Reissner-Mindlin plates using multi-material discrete shear gap method", Steel Compos. Struct., 47(3), 365-374. https://doi.org/10.12989/scs.2023.47.3.365.
- Nguyen, M.N., Lee, D.K., Kang, J.W. and Shin, S.M. (2023b), "Topology optimization with functionally graded multi-material for elastic buckling criteria", Steel Compos. Struct., 46(1), 33-51. https://doi.org/10.12989/scs.2023.46.1.033.
- Nguyen, T.K., Sab, K. and Bonnet, G. (2006), "A ReissnerMindlin model for functionally graded materials", 3rd European Conference on Computational Mechanics, Lisbon, Portugal.
- Nguyen, T.K., Sab, K. and Bonnet, G. (2008), "First-order shear deformation plate models for functionally graded materials", Compos. Struct., 83, 25-36. https://doi.org/10.1016/j.compstruct.2007.03.004.
- Noor, A.K. and Burton, W.S. (1989), "Assessment of shear deformation theories for multilayered composite plates", Appl. Mech. Rev., 42, 1-13. https://doi.org/10.1115/1.3152418.
- Noor, A.K. and Burton, W.S. (1989), "Stress and free vibration analyses of multilayered composite plates", Compos. Struct., 11, 183-204. https://doi.org/10.1016/0263-8223(89)90058-5.
- Noor, A.K. and Burton, W.S. (1990), "Assessment of computational models for multilayered anisotropic plates", Compos. Struct., 14, 233-265. https://doi.org/10.1016/0263-8223(90)90050-O.
- Noor, A.K., Burton, W.S. and Peters, J.M. (1990), "Predictorcorrector procedure for stress and free vibration analyses of multilayered composite plates and shells", Comput. Mech. Appl. Mech. Eng., 82, 341-364. https://doi.org/10.1016/0045-7825(90)90171-H.
- Ozmen, R., Kilic, R. and Esen, I. (2022), "Thermomechanical vibration and buckling response of nonlocal strain gradient porous FG nanobeams subjected to magnetic and thermal fields", Mech. Adv. Mater. Struct., 1-20. https://doi.org/10.1080/15376494.2022.2124000.
- Reddy, J.N. (2002), Energy Principles and Variational Methods in Applied Mechanics, Wiley, New York.
- Rezaei, A.S. and Saidi, A.R. (2015), "Exact solution for free vibration of thick rectangular plates made of porous materials", Compos. Struct., 134, 1051-1060. https://doi.org/10.1016/j.compstruct.2015.08.125.
- Rezaei, A.S. and Saidi, A.R. (2016), "Application of Carrera Unified Formulation to study the effect of porosity on natural frequencies of thick porous-cellular plates", Compos. B Eng., 91, 361-370. https://doi.org/10.1016/j.compositesb.2015.12.050.
- Rezaei, A.S. and Saidi, A.R. (2017), "Buckling response of moderately thick fluid-infiltrated porous annular sector plates", Acta Mech., 228, 3929-3945. https://doi.org/10.1007/s00707-017-1908-2.
- Rezaei, A.S. and Saidi, A.R. (2017), "On the effect of coupled solid-fluid deformation on natural frequencies of fluid saturated porousplates", Eur. J. Mech. Solid., 63, 99-109. https://doi.org/10.1016/j.euromechsol.2016.12.006.
- Sadoun, M., Houari, M.S.A., Bakora, A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2018), "Vibration analysis of thinck orthotropic plates using quasi 3D sinusoidal shear deformation theory", Geomech. Eng., 16(2), 141-150. https://doi.org/10.12989/gae.2018.16.2.141.
- Sadoune, M., Tounsi, A. and Houari, M.S.A. (2014), "A novel first-order shear deformation theory for laminated composite plates", Steel Compos. Struct., 17(3), 321-331. https://doi.org/10.12989/scs.2014.17.3.1321.
- Saidi, H. and Sahla, M. (2019), "Vibration analysis of functionally graded plates with porosity composed of a mixture of Aluminum (Al) and Alumina (Al2O3) embedded in an elastic medium", Frattura ed Integrita Strutturale, 50, 286-299. https://doi.org/10.3221/IGF-ESIS.50.24.
- Selmi, A. (2021), "Vibration behavior of bi-dimensional functionally graded beams", Struct. Eng. Mech., 77(5), 587-599. https://doi.org/10.12989/sem.2021.77.5.587.
- Shahsavari, D., Karami, B., Fahham, H.R. and Li, L. (2018), "On the shear buckling of porous nanoplates using a new sizedependent quasi-3D shear deformation theory", Acta Mech., 229(11), 4549-4573. https://doi.org/10.1007/s00707-018-2247-7.
- Singh, S.J. and Harsha, S.P. (2020b), "Thermo-mechanical analysis of porous sandwich S-FGM plate for different boundary conditions using Galerkin Vlasov's method, a semi analytical approach", Thin Wall. Struct., 150, 106668. https://doi.org/10.1016/j. tws.2020.106668.
- Soltani, K., Bessaim, A., Houari, M.S.A., Kaci, A., Benguediab, M., Tounsi, A. and Alhodaly, M.S. (2019), "A novel hyperbolic shear deformation theory for the mechanical buckling analysis of advanced composite plates resting on elastic foundations", Steel Compos. Struct., 30(1), 13-29. https://doi.org/10.12989/scs.2019.30.1.013.
- Sursh, S. and Mortensen, A. (1998), Fundamentals of Functionally Graded Material: Processing and Thermomecanical Behaviour of Graded Metal and Metal-Ceramic Composites, Press, Cambridge.
- Timoshenko, S.P. (1922), "On the transverse vibrations of bars of uniform cross section", Philos. Mag., 43, 125-131. https://doi.org/10.1080/14786442208633855.
- Tran, T.T., Tran, V.K., Pham, Q.H. and Zenkour, A.M. (2021), "Extended four-unknown higher-order shear deformation nonlocal theory for bending, buckling and free vibration of functionally graded porous nanoshell resting on elastic foundation", Compos. Struct., 264, 113737. https://doi.org/10.1016/j.compstruct.113737.
- Vlachoutsis, S. (1992), "Shear correction factors for plates and shells", Int. J. Numer. Meth. Eng., 33, 1537-1552. https://doi.org/10.1002/nme.1620330712.
- Wang, Y.Q. and Zu, J.W. (2017), "Large-amplitude vibration of sigmoid functionally graded thin plates with porosities", Thin Wall. Struct., 119, 911-924. https://doi.org/10.1016/j.tws.08.012.
- Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
- Whitney, J.M. (1973), "Shear correction factors for orthotropic laminates under static load", J. Appl. Mech., 40, 302.
- Whitney, J.M., Browning, C.E. and Mair, A. (1974), "Analysis of the flexure test for laminated composite materials", Compos. Mater., Test. Des., 546, 30-45. https://doi.org/10.1520/STP35481S
- Zenkour, A.M. (2018), "A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities", Compos. Struct., 201, 38-48. https://doi.org/10.1016/j.compstruct.05.147.
- Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Free vibration analysis of functionally graded plates using the element-free kpRitz method", J. Sound Vib., 319, 918-939. https://doi.org/10.1016/j.jsv.2008.06.025.