DOI QR코드

DOI QR Code

RIGIDITY AND NONEXISTENCE OF RIEMANNIAN IMMERSIONS IN SEMI-RIEMANNIAN WARPED PRODUCTS VIA PARABOLICITY

  • Railane Antonia (Departamento de Matematica Universidade Federal da Paraiba) ;
  • Henrique F. de Lima (Departamento de Matematica Universidade Federal de Campina Grande) ;
  • Marcio S. Santos (Departamento de Matematica Universidade Federal da Paraiba)
  • 투고 : 2022.10.25
  • 심사 : 2023.10.19
  • 발행 : 2024.01.01

초록

In this paper, we study complete Riemannian immersions into a semi-Riemannian warped product obeying suitable curvature constraints. Under appropriate differential inequalities involving higher order mean curvatures, we establish rigidity and nonexistence results concerning these immersions. Applications to the cases that the ambient space is either an Einstein manifold, a steady state type spacetime or a pseudo-hyperbolic space are given, and a particular investigation of entire graphs constructed over the fiber of the ambient space is also made. Our approach is based on a parabolicity criterion related to a linearized differential operator which is a divergence-type operator and can be regarded as a natural extension of the standard Laplacian.

키워드

과제정보

The authors would like to thank the referee for reading the manuscript in great detail and for his/her valuable suggestions and useful comments which improved the paper.

참고문헌

  1. A. L. Albujer, New examples of entire maximal graphs in ℍ2 × ℝ2, Differential Geom. Appl. 26 (2008), no. 4, 456-462. https://doi.org/10.1016/j.difgeo.2007.11.035 
  2. A. L. Albujer and L. J. Al'ias, Spacelike hypersurfaces with constant mean curvature in the steady state space, Proc. Amer. Math. Soc. 137 (2009), no. 2, 711-721. https://doi.org/10.1090/S0002-9939-08-09546-4 
  3. J. A. Aledo, A. Romero, and R. M. Rubio, Constant mean curvature spacelike hypersurfaces in Lorentzian warped products and Calabi-Bernstein type problems, Nonlinear Anal. 106 (2014), 57-69. https://doi.org/10.1016/j.na.2014.04.010 
  4. J. A. Aledo, R. M. Rubio, and J. J. Salamanca, Complete spacelike hypersurfaces in generalized Robertson-Walker and the null convergence condition: Calabi-Bernstein problems, Rev. R. Acad. Cienc. Exactas F'is. Nat. Ser. A Mat. RACSAM 111 (2017), no. 1, 115-128. https://doi.org/10.1007/s13398-016-0277-3 
  5. L. J. Al'ias, A. Brasil, and A. G. Colares, Integral formulae for spacelike hypersurfaces in conformally stationary spacetimes and applications, Proc. Edinb. Math. Soc. (2) 46 (2003), no. 2, 465-488. https://doi.org/10.1017/S0013091502000500 
  6. L. J. Al'ias and A. G. Colares, Uniqueness of spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson-Walker spacetimes, Math. Proc. Cambridge Philos. Soc. 143 (2007), no. 3, 703-729. https://doi.org/10.1017/S0305004107000576 
  7. L. J. Al'ias, A. G. Colares, and H. F. de Lima, On the rigidity of complete spacelike hypersurfaces immersed in a generalized Robertson-Walker spacetime, Bull. Braz. Math. Soc. (N.S.) 44 (2013), no. 2, 195-217. https://doi.org/10.1007/s00574-013-0009-7 
  8. L. J. Al'ias, A. G. Colares, and H. F. de Lima, Uniqueness of entire graphs in warped products, J. Math. Anal. Appl. 430 (2015), no. 1, 60-75. https://doi.org/10.1016/j.jmaa.2015.04.073 
  9. L. J. Al'ias and M. Dajczer, Uniqueness of constant mean curvature surfaces properly immersed in a slab, Comment. Math. Helv. 81 (2006), no. 3, 653-663. https://doi.org/10.4171/CMH/68 
  10. L. J. Al'ias and M. Dajczer, Constant mean curvature hypersurfaces in warped product spaces, Proc. Edinb. Math. Soc. (2) 50 (2007), no. 3, 511-526. https://doi.org/10.1017/S0013091505001069 
  11. L. J. Al'ias, D. Impera, and M. Rigoli, Spacelike hypersurfaces of constant higher order mean curvature in generalized Robertson-Walker spacetimes, Math. Proc. Cambridge Philos. Soc. 152 (2012), no. 2, 365-383. https://doi.org/10.1017/S0305004111000697 
  12. L. J. Al'ias, D. Impera, and M. Rigoli, Hypersurfaces of constant higher order mean curvature in warped products, Trans. Amer. Math. Soc. 365 (2013), no. 2, 591-621. https://doi.org/10.1090/S0002-9947-2012-05774-6 
  13. L. J. Al'ias, P. Mastrolia, and M. Rigoli, Maximum principles and geometric applications, Springer Monographs in Mathematics, Springer, Cham, 2016. https://doi.org/10.1007/978-3-319-24337-5 
  14. L. J. Al'ias, A. Romero, and M. Sanchez, Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes, Gen. Relativity Gravitation 27 (1995), no. 1, 71-84. https://doi.org/10.1007/BF02105675 
  15. L. J. Al'ias, A. Romero, and M. Sanchez, Spacelike hypersurfaces of constant mean curvature and Calabi-Bernstein type problems, Tohoku Math. J. (2) 49 (1997), no. 3, 337-345. https://doi.org/10.2748/tmj/1178225107 
  16. C. P. Aquino, J. G. Araujo, M. Batista, and H. F. de Lima, Uniqueness of spacelike hypersurfaces in a GRW spacetime via higher order mean curvatures, Bull. Braz. Math. Soc. (N.S.) 48 (2017), no. 1, 45-61. https://doi.org/10.1007/s00574-016-0004-x 
  17. C. P. Aquino, J. G. Araujo, and H. F. de Lima, Rigidity of complete hypersurfaces in warped product spaces via higher order mean curvatures, Beitr. Algebra Geom. 57 (2016), no. 2, 391-405. https://doi.org/10.1007/s13366-016-0288-4 
  18. C. P. Aquino and H. F. de Lima, On the unicity of complete hypersurfaces immersed in a semi-Riemannian warped product, J. Geom. Anal. 24 (2014), no. 2, 1126-1143. https://doi.org/10.1007/s12220-012-9366-5 
  19. J. L. M. Barbosa and A. G. Colares, Stability of hypersurfaces with constant r-mean curvature, Ann. Global Anal. Geom. 15 (1997), no. 3, 277-297. https://doi.org/10.1023/A:1006514303828 
  20. A. L. Besse, Einstein Manifolds, Springer, Berlin, 1987. https://doi.org/10.1007/978-3-540-74311-8 
  21. M. Caballero, A. Romero, and R. M. Rubio, Constant mean curvature spacelike hypersurfaces in Lorentzian manifolds with a timelike gradient conformal vector field, Classical Quantum Gravity 28 (2011), no. 14, 145009, 14 pp. https://doi.org/10.1088/0264-9381/28/14/145009 
  22. F. Camargo, A. Caminha, H. de Lima, and U. Parente, Generalized maximum principles and the rigidity of complete spacelike hypersurfaces, Math. Proc. Cambridge Philos. Soc. 153 (2012), no. 3, 541-556. https://doi.org/10.1017/S0305004112000369 
  23. A. G. Colares and H. F. de Lima, Some rigidity theorems in semi-Riemannian warped products, Kodai Math. J. 35 (2012), no. 2, 268-282. https://doi.org/10.2996/kmj/1341401051 
  24. S. C. Garc'ia-Mart'inez, D. Impera, and M. Rigoli, A sharp height estimate for compact hypersurfaces with constant k-mean curvature in warped product spaces, Proc. Edinb. Math. Soc. (2) 58 (2015), no. 2, 403-419. https://doi.org/10.1017/S0013091514000157 
  25. S. Montiel, Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds, Indiana Univ. Math. J. 48 (1999), no. 2, 711-748. https://doi.org/10.1512/iumj.1999.48.1562 
  26. S. Montiel, Uniqueness of spacelike hypersurfaces of constant mean curvature in foliated spacetimes, Math. Ann. 314 (1999), no. 3, 529-553. https://doi.org/10.1007/s002080050306 
  27. B. O'Neill, Semi-Riemannian geometry, Pure and Applied Mathematics, 103, Academic Press, Inc., New York, 1983. 
  28. S. Pigola, M. Rigoli, and A. G. Setti, A Liouville-type result for quasi-linear elliptic equations on complete Riemannian manifolds, J. Funct. Anal. 219 (2005), no. 2, 400-432. https://doi.org/10.1016/j.jfa.2004.05.009 
  29. A. Romero and R. M. Rubio, On the mean curvature of spacelike surfaces in certain three-dimensional Robertson-Walker spacetimes and Calabi-Bernstein's type problems, Ann. Global Anal. Geom. 37 (2010), no. 1, 21-31. https://doi.org/10.1007/s10455-009-9171-y 
  30. A. Romero, R. M. Rubio, and J. J. Salamanca, Uniqueness of complete maximal hypersurfaces in spatially parabolic generalized Robertson-Walker spacetimes, Classical Quantum Gravity 30 (2013), no. 11, 115007, 13 pp. https://doi.org/10.1088/0264-9381/30/11/115007 
  31. Y. Tashiro, Complete Riemannian manifolds and some vector fields, Trans. Amer. Math. Soc. 117 (1965), 251-275. https://doi.org/10.2307/1994206