References
- Al-Jamimi, H.A., Al-Kutti, W.A., Alwahaishi, S. and Alotaibi, K.S. (2022), "Prediction of compressive strength in plain and blended cement concretes using a hybrid artificial intelligence model", Case Stud. Constr. Mater., 17, 01238. https://doi.org/10.1016/j.cscm.2022.e01238.
- Alterary, S.S. and Marei, N.H. (2021), "Fly ash properties, characterization, and applications: A review", J. King Saud Univ. Sci., 33(6), 101536. https://doi.org/10.1016/j.jksus.2021.101536.
- Amruthamol, N.A. and Kapoor, K. (2022), "Machine learning model to forecast concrete compressive strength", Advances in Data and Information Sciences: Proceedings of ICDIS 2022, Agra, India, June.
- Andrews, D.F. (1974), "A robust method for multiple linear regression", Technometr., 16(4), 523-531. https://doi.org/10.1080/00401706.1974.10489233
- Apostolopoulou, M., Asteris, P.G., Armaghani, D.J., Douvika, M.G., Lourenco, P.B., Cavaleri, L., Bakolas, A. and Moropoulou, A. (2020), "Mapping and holistic design of natural hydraulic lime mortars", Cement Concrete Res., 136, 106167. https://doi.org/10.1016/j.cemconres.2020.106167.
- Armaghani, D.J. and Asteris, P.G. (2021), "A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength", Neural Comput. Appl., 33(9), 4501-4532. https://doi.org/10.1007/s00521-020-05244-4.
- Asteris, P.G., Apostolopoulou, M., Skentou, A.D. and Moropoulou, A. (2019b), "Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars", Comput. Concrete, 24(4), 329-345. https://doi.org/10.12989/cac.2019.24.4.329.
- Asteris, P.G., Armaghani, D.J., Hatzigeorgiou, G.D., Karayannis, C.G. and Pilakoutas, K. (2019a), "Predicting the shear strength of reinforced concrete beams using artificial neural networks", Comput. Concrete, 24(5), 469-488. https://doi.org/10.12989/cac.2019.24.5.469.
- Asteris, P.G., Ashrafian, A. and Rezaie-Balf, M. (2019c), "Prediction of the compressive strength of self-compacting concrete using surrogate models", Comput. Concrete, 24(2), 137-150. https://doi.org/10.12989/cac.2019.24.2.137.
- Asteris, P.G., Koopialipoor, M., Armaghani, D.J., Kotsonis, E.A. and Lourenco, P.B. (2021), "Prediction of cement-based mortars compressive strength using machine learning techniques", Neural Compu. Appl., 33(19), 13089-13121. https://doi.org/10.1007/s00521-021-06004-8.
- Asteris, P.G., Lourenco, P.B., Hajihassani, M., Adami, C.E.N., Lemonis, M.E., Skentou, A.D., Marques, R., Nguyen, H., Rodrigues, H. and Varum, H. (2021b), "Soft computing-based models for the prediction of masonry compressive strength", Eng. Struct., 248, 113276. https://doi.org/10.1016/j.engstruct.2021.113276.
- Asteris, P.G., Skentou, A.D., Bardhan, A., Samui, P. and Lourenco, P.B. (2021c), "Soft computing techniques for the prediction of concrete compressive strength using Non-Destructive tests", Constr. Build. Mater., 303, 124450. https://doi.org/10.1016/j.conbuildmat.2021.124450.
- Bui, D.K., Nguyen, T., Chou, J.S., Nguyen-Xuan, H. and Ngo, T.D. (2018), "A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete", Constr. Build. Mater., 180, 320-333. https://doi.org/10.1016/j.conbuildmat.2018.05.201.
- Cahyani, R.A.T. and Rusdianto, Y. (2020), "Concrete performance with ground granulated blast furnace slag as supplementary cementitious materials", IOP Conference Series: Materials Science and Engineering, Yogyakarta, Indonesia, November.
- Chen, L., (2022), "Hybrid structured artificial network for compressive strength prediction of HPC concrete", J. Appl. Sci. Eng., 26(7), 991-1001. https://doi.org/10.6180/jase.202307_26(7).0010.
- Cheng, H., Kitchen, S. and Daniels, G. (2022), "Novel hybrid radial based neural network model on predicting the compressive strength of long-term HPC concrete", Adv. Eng. Intell. Syst., 1(2), 1. https://doi.org/10.22034/aeis.2022.340732.1012.
- Cheng, M.Y, Cao, M.T. and Dao-Thi, N.M, (2023), "A novel artificial intelligence-aided system to mine historical high-performance concrete data for optimizing mixture design", Expert Syst. Appl., 212, 118605. https://doi.org/10.1016/j.eswa.2022.118605.
- Dutta, S., Samui, P. and Kim, D. (2018), "Comparison of machine learning techniques to predict compressive strength of concrete", Comput. Concrete, 21(4), 463-470. https://doi.org/10.12989/cac.2018.21.4.463.
- Emad, W., Mohammed, A.S., Bras, A., Asteris, P.G., Kurda, R., Muhammed, Z., Hassan, A.M.T., Qaidi, S.M. and Sihag, P. (2022), "Metamodel techniques to estimate the compressive strength of UHPFRC using various mix proportions and a high range of curing temperatures", Constr. Build. Mater., 349, 128737. https://doi.org/10.1016/j.conbuildmat.2022.128737.
- Farooq, F., Ahmed, W., Akbar, A., Aslam, F. and Alyousef, R. (2021), "Predictive modeling for sustainable high-performance concrete from industrial wastes: A comparison and optimization of models using ensemble learners", J. Clean. Prod., 292, 126032. https://doi.org/10.1016/j.jclepro.2021.126032.
- Golafshani, E.M., Behnood, A. and Arashpour, M. (2020), "Predicting the compressive strength of normal and high-performance concretes using ANN and ANFIS hybridized with grey wolf optimizer", Constr. Build. Mater., 232, 117266. https://doi.org/10.1016/j.conbuildmat.2019.117266.
- Hameed, M.M. and AlOmar, M.K. (2019), "Prediction of compressive strength of high-performance concrete: Hybrid artificial intelligence technique", International Conference on Applied Computing to Support Industry: Innovation and Technology, Ramadi, Iraq, September.
- Hameed, M.M., AlOmar, M.K., Baniya, W.J. and AlSaadi, M.A. (2021), "Incorporation of artificial neural network with principal component analysis and cross-validation technique to predict high-performance concrete compressive strength", Asian J. Civil Eng., 22, 1019-1031. https://doi.org/10.1007/s42107-021-00362-3.
- Han, J., Pei, J. and Tong, H. (2022), Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers, Burlington, MA, USA.
- Han, Q., Gui, C., Xu, J. and Lacidogna, G. (2019), "A generalized method to predict the compressive strength of high-performance concrete by improved random forest algorithm", Constr. Build. Mater., 226, 734-742. https://doi.org/10.1016/j.conbuildmat.2019.07.315.
- Hu, X. (2023), "Evaluation of compressive strength of the HPC produced with admixtures by a novel hybrid SVR model", Multiscale Multidiscip. Model. Exp. Des., 2023, 1-14. https://doi.org/10.1007/s41939-023-00150-3.
- Imran, H., Ibrahim, M., Al-Shoukry, S., Rustam, F. and Ashraf, I. (2022), "Latest concrete materials dataset and ensemble prediction model for concrete compressive strength containing RCA and GGBFS materials", Constr. Build. Mater., 325, 126525. https://doi.org/10.1016/j.conbuildmat.2022.126525.
- Imran, M., Khushnood, R.A. and Fawad, M. (2023), "A hybrid data-driven and metaheuristic optimization approach for the compressive strength prediction of high-performance concrete", Case Stud. Constr. Mater., 18, 01890. https://doi.org/10.1016/j.cscm.2023.e01890.
- Jin, R., Chen, Q. and Soboyejo, A.B. (2018), "Non-linear and mixed regression models in predicting sustainable concrete strength", Constr. Build. Mater., 170, 142-152. https://doi.org/10.1016/j.conbuildmat.2018.03.063.
- Joy, R.A. (2021), "Fine tuning the prediction of the compressive strength of concrete: A bayesian optimization based approach", 2021 International Conference on Innovations in Intelligent Systems and Applications (INISTA), Kocaeli, Turkey, August.
- Kablay, H. and Gumbo, V. (2021), "Comparison of multiple linear regression and neural network models in bank performance prediction in Botswana", J. Math. Stat., 17(1), 88-95. https://doi.org/10.3844/jmssp.2021.88.95.
- Kaloop, M.R., Kumar, D., Samui, P., Hu, J.W. and Kim, D. (2020), "Compressive strength prediction of high-performance concrete using gradient tree boosting machine", Constr. Build. Mater., 264, 120198. https://doi.org/10.1016/j.conbuildmat.2020.120198.
- Kamath, M.V., Prashanth, S., Kumar, M. and Tantri, A. (2022), "Machine-learning-algorithm to predict the high-performance concrete compressive strength using multiple data", J. Eng. Des. Technol., 2022, 1-29. https://doi.org/10.1108/JEDT-11-2021-0637.
- Kapoor, H. (2020), Random Forest vs Extra Trees. https://www.kaggle.com/code/hkapoor/random-forest-vs-extra-trees
- Khan, K., Salami, B.A., Iqbal, M., Amin, M.N., Ahmed, F. and Jalal, F.E. (2022), "Compressive strength estimation of fly ash/slag based green concrete by deploying artificial intelligence models", Mater., 15(10), 3722. https://doi.org/10.3390/ma15103722.
- Khatti, J. and Grover, K.S. (2023a), "Prediction of compaction parameters for fine-grained soil: Critical comparison of the deep learning and standalone models", J. Rock Mech. Geotech. Eng., 15(11), 3010-3038. https://doi.org/10.1016/j.jrmge.2022.12.034.
- Khatti, J. and Grover, K.S. (2023b), "CBR prediction of pavement materials in unsoaked condition using LSSVM, LSTM-RNN, and ANN approaches", Int. J. Pavement Res. Technol., 2023, 1-37. https://doi.org/10.1007/s42947-022-00268-6.
- Khatti, J. and Grover, K.S. (2023c), "Prediction of UCS of fine-grained soil based on machine learning part 1: multivariable regression analysis, gaussian process regression, and gene expression programming", Multiscale Multidiscip. Model. Exp. Des., 2023, 1-24. https://doi.org/10.1007/s41939-022-00137-6.
- Khatti, J. and Grover, K.S. (2022), "Determination of the optimum performance AI model and methodology to predict the compaction parameters of soils", ICTACT J. Soft Comput., 12(3), http://doi.org/10.21917/ijsc.2022.0378.
- Khatti, J. and Grover, K.S. (2023d), "Prediction of UCS of fine-grained soil based on machine learning part 2: Comparison between hybrid relevance vector machine and Gaussian process regression", Multiscale Multidiscip. Model. Exp. Des., 2023, 1-41. https://doi.org/10.1007/s41939-023-00191-8.
- Khatti, J. and Grover, K.S. (2023e), "Assessment of fine-grained soil compaction parameters using advanced soft computing techniques", Arab. J. Geosci., 16(3), 208. https://doi.org/10.1007/s12517-023-11268-6.
- Khatti, J. and Grover, K.S. (2023f), "Prediction of soaked CBR of fine-grained soils using soft computing techniques", Multiscale Multidiscip. Model. Exp. Des., 6(1), 97-121. https://doi.org/10.1007/s41939-022-00131-y
- Latif, S.D. (2021), "Concrete compressive strength prediction modeling utilizing deep learning long short-term memory algorithm for a sustainable environment", Environ. Sci. Pollut. Res., 28(23), 30294-30302. https://doi.org/10.1007/s11356-021-12877-y.
- Li, Q.F. and Song, Z.M. (2022), "High-performance concrete strength prediction based on ensemble learning", Constr. Build. Mater., 324, 126694. https://doi.org/10.1016/j.conbuildmat.2022.126694.
- Ly, H.B., Nguyen, T.A. and Pham, B.T. (2022), "Investigation on factors affecting early strength of high-performance concrete by gaussian process regression", PloS one, 17(1), 0262930. https://doi.org/10.1371/journal.pone.0262930.
- Mai, H.V.T., Nguyen, T.A., Ly, H.B. and Tran, V.Q. (2021), "Investigation of ANN model containing one hidden layer for predicting compressive strength of concrete with blast-furnace slag and fly ash", Adv. Mater. Sci. Eng., 2021, 1-17. https://doi.org/10.1155/2021/5540853.
- Mai, H.V.T., Nguyen, T.A., Ly, H.B. and Tran, V.Q. (2021), "Prediction compressive strength of concrete containing GGBFS using random forest model", Adv. Civil Eng., 2021, 1-12. https://doi.org/10.1155/2021/6671448.
- Mandal, S., Shilpa, M. and Rajeshwari, R. (2019), "Compressive strength prediction of high-strength concrete using regression and ANN models", Sustainable Construction and Building Materials: Select Proceedings of ICSCBM 2018, Springer, Singapore.
- Mandal, S., Shilpa, M. and Rajeshwari, R. (2019), "Compressive strength prediction of high-strength concrete using regression and ANN models", Sustainable Construction and Building Materials: Select Proceedings of ICSCBM 2018, Springer, Singapore.
- Mater, Y., Kamel, M., Karam, A. and Bakhoum, E. (2023), "ANN-Python prediction model for the compressive strength of green concrete", Constr. Innov., 23(2), 340-359. https://doi.org/10.1108/CI-08-2021-0145.
- Mateus, M.S.R. (2023), "Prediction of high-performance concrete compressive strength through a comparison of machine learning techniques", MS Dissertation, Universidade Nova de Lisboa, Lisbon, Portugal.
- Mentaschi, L., Besio, G., Cassola, F. and Mazzino, A. (2013), "Problems in RMSE-based wave model validations", Ocean Modell., 72, 53-58. https://doi.org/10.1016/j.ocemod.2013.08.003.
- Min, H. and Luo, X. (2016), "Calibration of soft sensor by using Just-in-time modeling and AdaBoost learning method", Chin. J. Chem. Eng., 24(8), 1038-1046. https://doi.org/10.1016/j.cjche.2016.05.015.
- Mohamed, O., Kewalramani, M., Ati, M. and Al Hawat, W. (2021), "Application of ANN for prediction of chloride penetration resistance and concrete compressive strength", Mater., 17, 101123. https://doi.org/10.1016/j.mtla.2021.101123.
- Moradi, M.J., Khaleghi, M., Salimi, J,. Farhangi, V. and Ramezanianpour, A.M. (2021), "Predicting the compressive strength of concrete containing metakaolin with different properties using ANN", Measure., 183, 109790. https://doi.org/10.1016/j.measurement.2021.109790.
- Nayak, D.K., Abhilash, P.P., Singh, R., Kumar, R. and Kumar, V. (2022), "Fly ash for sustainable construction: A review of fly ash concrete and its beneficial use case studies", Clean. Mater., 2022, 100143. https://doi.org/10.1016/j.clema.2022.100143.
- Neville, A.M. and Brooks, J.J. (2010), Concrete Technology, 2nd Edition, Pearson Education Ltd., London, UK.
- Nguyen, T.N., Yu, Y., Li, J., Gowripalan, N. and Sirivivatnanon, V. (2019), "Elastic modulus of ASR-affected concrete: An evaluation using artificial neural network", Comput. Concrete, 24(6), 541-553. https://doi.org/10.12989/cac.2019.24.6.541.
- Ranjbar, I., Toufigh, V. and Boroushaki, M. (2022), "A combination of deep learning and genetic algorithm for predicting the compressive strength of high-performance concrete", Struct. Concrete, 23(4), 2405-2418. https://doi.org/10.1002/suco.202100199.
- Ris, R.C., Holthuijsen, L.H. and Booij, N. (1999), "A third-generation wave model for coastal regions: 2. Verification", J. Geophys. Res.: Oceans, 104(C4), 7667-7681. https://doi.org/10.1029/1998JC900123.
- Sadrossadat, E. and Basarir, H. (2019), "An evolutionary-based prediction model of the 28-day compressive strength of high-performance concrete containing cementitious materials", Adv. Civil Eng. Mater., 8(3), 484-497. https://doi.org/10.1520/ACEM20190016
- Salami, B.A., Olayiwola, T., Oyehan, T.A. and Raji, I.A. (2021), "Data-driven model for ternary-blend concrete compressive strength prediction using machine learning approach", Constr. Build. Mater., 301, 124152. https://doi.org/10.1016/j.conbuildmat.2021.124152.
- Shah, H.A., Yuan, Q., Akmal, U., Shah, S.A., Salmi, A., Awad, Y.A., Shah, L.A., Iftikhar, Y., Javed, M.H. and Khan, M.I. (2022), "Application of machine learning techniques for predicting compressive, splitting tensile, and flexural strengths of concrete with metakaolin", Mater., 15(15), 5435. https://doi.org/10.3390/ma15155435.
- Shaswat, K. (2021), "Hybrid-based deep belief network model for cement compressive strength prediction", Comput. J., 64(6), 909-920. https://doi.org/10.1093/comjnl/bxaa197.
- Simsek, S., Gumus, M., Khalafalla, M. and Issa, T.B. (2020), "A hybrid data analytics approach for high-performance concrete compressive strength prediction", J. Business Anal., 3(2), 158-168. https://doi.org/10.1080/2573234X.2020.1760741.
- Singh, U., Rizwan, M., Alaraj, M. and Alsaidan, I. (2021), "A machine learning-based gradient boosting regression approach for wind power production forecasting: A step towards smart grid environments", Energies, 14(16), 5196. https://doi.org/10.3390/en14165196.
- Smith, G.N. (1986), Probability and Statistics in Civil Engineering - An Introduction, Collins, London, UK.
- Song, H., Ahmad, A., Farooq, F., Ostrowski, K.A., Maslak, M., Czarnecki, S. and Aslam, F. (2021), "Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms", Constr. Build. Mater., 308, 125021. https://doi.org/10.1016/j.conbuildmat.2021.125021.
- Strohmann, T. and Grudic, G. (2002), "A formulation for minimax probability machine regression", Adv. Neural Informat. Pr. Syst., 15, 1.
- Tipu, R.K., Panchal, V.R. and Pandya, K.S. (2022), "An ensemble approach to improve BPNN model precision for predicting compressive strength of high-performance concrete", Struct., 45, 500-508. https://doi.org/10.1016/j.istruc.2022.09.046.
- Vakharia, V. and Gujar, R. (2019), "Prediction of compressive strength and portland cement composition using cross-validation and feature ranking techniques", Constr. Build. Mater., 225, 292-301. https://doi.org/10.1016/j.conbuildmat.2019.07.224.
- Vilane, B.R.T. and Sabelo, N. (2016), "The effect of aggregate size on the compressive strength of concrete", J. Agricult. Sci. Eng., 2(6), 66-69.
- Wang, H. and Zhang, S. (2022), "Double hybridized artificial network for the prediction of HPC concrete compressive strength", J. Intell. Fuzzy Syst., 43(6), 7963-7974. https://doi.org/10.3233/JIFS-220736.
- Waris, M.I., Plevris, V., Mir, J., Chairman, N. and Ahmad, A. (2022), "An alternative approach for measuring the mechanical properties of hybrid concrete through image processing and machine learning", Constr. Build. Mater., 328, 126899. https://doi.org/10.1016/j.conbuildmat.2022.126899.
- Willmott, C.J., Robeson, S.M. and Matsuura, K. (2012), "A refined index of model performance", Int. J. Climatol., 32(13), 2088-2094. https://doi.org/10.1002/joc.2419.
- Yu, Y., Li, W., Li, J. and Nguyen, T.N. (2018), "A novel optimised self-learning method for compressive strength prediction of high performance concrete", Constr. Build. Mater., 184, 229-247. https://doi.org/10.1016/j.conbuildmat.2018.06.219.
- Yu, Y., Nguyen, T.N., Li, J., Sanchez, L.F. and Nguyen, A. (2021), "Predicting elastic modulus degradation of alkali silica reaction affected concrete using soft computing techniques: A comparative study", Constr. Build. Mater., 274, 122024. https://doi.org/10.1016/j.conbuildmat.2020.122024.
- Yuan, Y., Wu, L. and Zhang, X. (2021), "Gini-Impurity index analysis", IEEE Trans. Informat. Forens. Secur., 16, 3154-3169. https://doi.org/10.1109/TIFS.2021.3076932.
- Zhu, F., Wu, X., Zhou, M., Sabri, M.M.S. and Huang, J. (2022), "Intelligent design of building materials: Development of an ai-based method for cement-slag concrete design", Mater., 15(11), 3833. https://doi.org/10.3390/ma15113833.