DOI QR코드

DOI QR Code

Infilled steel tubes as reinforcement in lightweight concrete columns: An experimental investigation and image processing analysis

  • N.Divyah (Department of Civil Engineering, PSG Institute of Technology and Applied Research) ;
  • R.Prakash (Department of Civil Engineering, Government College of Engineering) ;
  • S.Srividhya (Department of Civil Engineering, Builders Engineering College)
  • 투고 : 2022.08.03
  • 심사 : 2023.08.11
  • 발행 : 2024.01.25

초록

Under constant and cyclic axial compression, square composite short columns reinforced with Self Compacting Concrete (SCC) added with scrap rubber infilled inside steel tubes and with different types of concrete were cast and tested. The test is carried out to find the effectiveness of utilizing an aggregate manufactured from industrial waste and to address the problems associated with the need for alternative reinforcements along with waste management. The main testing parameters are the type of concrete, the effect of fiber inclusion, and the significance of rubber-infilled steel tubes. The failure modes of the columns and axial load-displacement curves of the steel tube-reinforced columns were all thoroughly investigated. According to the test results, all specimens failed due to compression failure with a longitudinal crack along the loading axis. The fiber-reinforced column specimens demonstrated improved ductility and energy absorption. In comparison to the normal-weight concrete columns, the lightweight concrete columns significantly improved the axial load-carrying capacity. The addition of basalt fiber to the columns significantly increased the yield stress and ultimate stress to 9.21%. The corresponding displacement at yield load and ultimate load was reduced to 10.36% and 28.79%, respectively. The precision of volumetric information regarding the obtained crack quantification, aggregates, and the fiber in concrete is studied in detail through image processing using MATLAB environment.

키워드

과제정보

Author R. Prakash would like to acknowledge the financial support provided by Program TEQIP-III, implemented by the National Project Implementation Unit (NPIU) of the Ministry of Human Resource Development, Government of India

참고문헌

  1. AISC (2016), Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL, USA. 
  2. Agwa, I.S., Omar, O.M., Tayeh, B.A. and Abdelsalam, B.A. (2020), "Effects of using rice straw and cotton stalk ashes on the properties of lightweight self-compacting concrete", Constr. Build. Mater., 235, 117541. https://doi.org/10.1016/j.conbuildmat.2019.117541. 
  3. Aisheh, Y.I., Atrushi, D.S., Akeed, M.H., Qaidi, S. and Tayeh, B.A. (2022), "Influence of steel fibers and microsilica on the mechanical properties of ultra-high-performance geopolymer concrete (UHP-GPC)", Case Stud. Constr. Mater., 17, e01245. https://doi.org/10.1016/j.cscm.2022.e01245. 
  4. Akeed, M.H., Qaidi, S., Ahmed, H.U., Faraj, R.H., Mohammed, A.S., Emad, W., Tayeh, B.A. and Azevedo, A.R.G. (2022), "Ultra-high-performance fiber-reinforced concrete. Part IV: Durability properties, cost assessment, applications, and challenges", Case Stud. Constr. Mater., 17, e01271. https://doi.org/10.1016/j.cscm.2022.e01271. 
  5. Akeed, M.H., Qaidi, S., Ahmed, H.U., Faraj, R.H., Majeed, S.S., Mohammed, A.S., Emad, W., Tayeh, B.A. and Azevedo, A.R.G. (2022), "Ultra-high-performance fiber-reinforced concrete. Part V: Mixture design, preparation, mixing, casting, and curing", Case Stud. Constr. Mater., 17, e01363. https://doi.org/10.1016/j.cscm.2022.e01363. 
  6. Al-Tayeb, M.M., Aisheh, Y.I., Qaidi, S.M.A. and Tayeh, B.A. (2022), "Experimental and simulation study on the impact resistance of concrete to replace high amounts of fine aggregate with plastic waste", Case Stud. Constr. Mater., 17, e01324. https://doi.org/10.1016/j.cscm.2022.e01324. 
  7. Almeshal, I., Al-Tayeb, M.M., Qaidi, S.M.A., Abu Bakar, B.H. and Tayeh, B.A. (2022), "Mechanical properties of eco-friendly cements-based glass powder in aggressive medium", Mater. Today: Proc., 58, 1582-1587. https://doi.org/10.1016/j.matpr.2022.03.613. 
  8. Bahrami, A., Badaruzzaman, W.H. and Osman, S.A. (2012), "Structural behaviour of tapered concrete-filled steel composite (TCFSC) columns subjected to eccentric loading", Comput. Concrete, 9(6), 403-426. https://doi.org/10.12989/cac.2012.9.6.403. 
  9. Bentayeb, F., Ait Tahar, K. and Chateauneuf, A. (2008), "New technique for reinforcement of concrete columns confined by embedded composite grid", Constr. Build. Mater., 22(8), 1624-1633. https://doi.org/10.1016/j.conbuildmat.2007.06.015. 
  10. Chandra Sekar, K., Murugesan, R., Sivaraja, M. and Prakash, R. (2023), "Development of sustainable concrete from hypo sludge combined with basalt fibre and latex", Sustainab., 15, 10986. https://doi.org/10.3390/su151410986. 
  11. Chen, C.C. and Lin, N.J. (2006), "Analytical model for predicting axial capacity and behavior of concrete encased steel composite stub columns", J. Constr. Steel Res., 62(5), 424-433. https://doi.org/10.1016/j.jcsr.2005.04.021. 
  12. Choi, S.H., Hwang, J.H., Han, S.J., Cho, H.C., Kim, J.H. and Kim, K.S. (2020), "Simplified effective compressive strengths of columns with intervening floor slabs", Int. J. Concrete Struct. Mater., 14(1), 1-11. https://doi.org/10.1186/s40069-020-00419-8. 
  13. Divyah, N., Prakash, R., Srividhya S. and Sivakumar A, (2022), "Parametric study on lightweight concrete-encased short columns under axial compression-Comparison of design codes", Struct. Eng. Mech., 83(3), 387-400. https://doi.org/10.12989/sem.2022.83.3.387. 
  14. Divyah, N., Thenmozhi, R., Neelamegam, M. and Prakash, R. (2020), "Characterization and behavior of basalt fiber- reinforced lightweight concrete", Struct. Concrete, 22(1), 422-430. https://doi.org/10.1002/suco.201900390. 
  15. El-Tawil, S. and Deierlein, G.G. (1999), "Strength and ductility of concrete encased composite columns", J. Struct. Eng., 125(9), 1009-1019. https://doi.org/10.1061/(asce)0733-9445(1999)125:9(1009). 
  16. Eurocode 4 (n.d.) Design of Composite Steel and Concrete Structures, The British Standards Institution, London, UK. 
  17. Feng, P., Cheng, S., Bai, Y. and Ye, L. (2015), "Mechanical behavior of concrete-filled square steel tube with FRP-confined concrete core subjected to axial compression", Compos. Struct., 123, 312-324. https://doi.org/10.1016/j.compstruct.2014.12.053. 
  18. Feng, P., Zhang, Y., Bai, Y. and Ye, L. (2013), "Strengthening of steel members in compression by mortar- filled FRP tubes", Thin Wall. Struct., 64, 1-12. https://doi.org/10.1016/j.tws.2012.11.001. 
  19. Giakoumelis, G. and Lam, D. (2004), "Axial capacity of circular concrete-filled tube columns", J. Constr. Steel Res., 60(7), 1049-1068. https://doi.org/10.1016/j.jcsr.2003.10.001. 
  20. Gomathi, P. and Sivakumar, A. (2015), "Accelerated curing effects on the mechanical performance of cold bonded and sintered fly ash aggregate concrete", Constr. Build. Mater., 77, 276-287. https://doi.org/10.1016/j.conbuildmat.2014.12.108. 
  21. Griffis, L.G. (2005), "Composite design provisions: 2005 AISC specification for steel buildings", Structures Congress 2005, New York, NY, USA, April. 
  22. Hadi, M.N., Alhussainy, F. and Sheikh, M.N. (2017), "Behavior of self-compacting concrete columns reinforced longitudinally with steel tubes", J. Struct. Eng., 143(6), 04017024. https://doi.org/10.1061/(asce)st.1943- 541x.0001752. 
  23. Hamada, H.M., Al-Attar, A.A., Tayeh, B. and Yahaya, F.B. (2022), "Optimizing the concrete strength of lightweight concrete containing nano palm oil fuel ash and palm oil clinker using response surface method", Case Stud. Constr. Mater., 16, e01061. https://doi.org/10.1016/j.cscm.2022.e01061. 
  24. Hamada, H.M., Alattar, A.A., Yahaya, F.M., Muthusamy, K. and Tayeh, B.A. (2021), "Mechanical properties of semi-lightweight concrete containing nano-palm oil clinker powder", Phys. Chem. Earth A/B/C., 121, 102977. https://doi.org/10.1016/j.pce.2021.102977. 
  25. He, L., Lin, S. and Jiang, H. (2019), "Confinement effect of concrete-filled steel tube columns with infill concrete of different strength grades", Front. Mater., 6, 71. https://doi.org/10.3389/fmats.2019.00071. 
  26. Hosseini Hashemi, B. and Poursamad Bonab, A. (2013), "Experimental investigation of the behavior of laced columns under constant axial load and cyclic lateral load", Eng. Struct., 57, 536-543. https://doi.org/10.1016/j.engstruct.2013.09.033. 
  27. Ibrahim, O. and Tayeh, B. (2020), "Combined effect of lightweight fine aggregate and micro rubber ash on the properties of cement mortar", Adv. Concrete Constr., 10(6), 537-546. https://doi.org/10.12989/acc.2020.10.6.537. 
  28. Jeung, I.K. and Kwon, Y.B. (2016), "The squash load of concretefilled tubular sections", Composite Construction in Steel and Concrete VII, North Queensland, Australia, July. 
  29. Lai, B., Liew, J.Y.R. and Hoang, A.L. (2019), "Behavior of high strength concrete encased steel composite stub columns with C130 concrete and S690 Steel", Eng. Struct., 200, 109743. https://doi.org/10.1016/j.engstruct.2019.109743. 
  30. Lai, B., Liew, J.Y.R. and Xiong, M. (2019), "Experimental study on high strength concrete encased steel composite short columns", Constr. Build. Mater., 228, 116640. https://doi.org/10.1016/j.conbuildmat.2019.08.021. 
  31. Liang, C.Y., Chen, C.C., Weng, C.C., Yin, S.Y.L. and Wang, J.C. (2014), "Axial compressive behavior of square composite columns confined by multiple spirals", J. Constr. Steel Res., 103, 230-240. https://doi.org/10.1016/j.jcsr.2014.09.006. 
  32. Lin, W., Sun, Y., Yang, Q. and Lin, Y. (2019), "Real-time comprehensive image processing system for detecting concrete bridges crack", Comput. Concrete, 23(6), 445-457. https://doi.org/10.12989/cac.2019.23.6.445. 
  33. Liu, B. and Yang, T. (2017), "Image analysis for detection of bugholes on concrete surface", Constr. Build. Mater., 137, 432-440. https://doi.org/10.1016/j.conbuildmat.2017.01.098. 
  34. Nadesan, M.S. and Dinakar, P. (2017), "Structural concrete using sintered flyash lightweight aggregate: A review", Constr. Build. Mater., 154, 928-944. https://doi.org/10.1016/j.conbuildmat.2017.08.005. 
  35. Onal, O., Ozden, G. and Felekoglu, B. (2008), "A methodology for spatial distribution of grain and voids in self compacting concrete using digital image processing methods", Comput. Concrete, 5(1), 61-74. https://doi.org/10.12989/cac.2008.5.1.061. 
  36. Prakash, R., Raman, S.N., Divyah, N., Subramanian, C., Vijayaprabha, C. and Praveenkumar, S. (2021), "Fresh and mechanical characteristics of Roselle fiber reinforced selfcompacting concrete incorporating fly ash and Metakaolin", Constr. Build. Mater., 290, 123209. https://doi.org/10.1016/j.conbuildmat.2021.123209. 
  37. Qin, J., Qian, J., Li, Z., You, C., Dai, X., Yue, Y. and Fan, Y. (2018), "Mechanical properties of basalt fiber reinforced magnesium phosphate cement composites", Constr. Build. Mater., 188, 946-955. https://doi.org/10.1016/j.conbuildmat.2018.08.044. 
  38. Sakino, K., Nakahara, H., Morino, S. and Nishiyama, I. (2004), "Behavior of centrally loaded concrete-filled steel-tube short columns", J. Struct. Eng., 130(2), 180-188. https://doi.org/10.1061/(asce)0733- 9445(2004)130:2(180). 
  39. Shanmugam, N.E. and Lakshmi, B. (2001), "State of the art report on steel-concrete composite columns", J. Constr. Steel Res., 57(10), 1041-1080. https://doi.org/10.1016/s0143-974x(01)00021-9. 
  40. Sharmila, S., Praveenkumar, S. and Nivetha, D. (2023), "Influence of GFRP confining tube parameters in double-skin tubular short columns under axial loading", J. Test. Eval., 51(5), 20220580. https://doi.org/10.1520/jte20220580. 
  41. Siddika, A., Mamun, M.A., Alyousef, R., Amran, Y.H.M., Aslani, F. and Alabduljabbar, H. (2019), "Properties and utilizations of waste tire rubber in concrete: A review", Constr. Build. Mater., 224, 711-731. https://doi.org/10.1016/j.conbuildmat.2019.07.108. 
  42. Tawfik, T.A., AlSaffar, D.M., Tayeh, B.A., Metwally, K.A. and ElKattan, I.M. (2021), "Role of expanded clay aggregate, Metakaolin and silica fume on the of modified lightweight concrete properties", Geosyst. Eng., 24(3), 145-156. https://doi.org/10.1080/12269328.2021.1887002. 
  43. Tayeh, B.A., Akeed, M.H., Qaidi, S. and Bakar, B.H.A. (2022), "Influence of microsilica and polypropylene fibers on the fresh and mechanical properties of ultra-high performance geopolymer concrete (UHP-GPC)", Case Stud. Constr. Mater., 17, e01367. https://doi.org/10.1016/j.cscm.2022.e01367. 
  44. Vijayalakshmi, R. and Ramanagopal, S. (2020), "Experimental investigation into banana fiber reinforced lightweight concrete masonry prism sandwiched with GFRP sheet", Civil Environ. Eng. Rep., 30(2), 15-31. https://doi.org/10.2478/ceer-2020-0017. 
  45. Waldmann, D., May, A. and Thapa, V.B. (2017), "Influence of the sheet profile design on the composite action of slabs made of lightweight woodchip concrete", Constr. Build. Mater., 148, 887-899. https://doi.org/10.1016/j.conbuildmat.2017.04.193. 
  46. Wang, X., Qi, Y., Sun, Y., Xie, Z. and Liu, W. (2019), "Compressive behavior of composite concrete columns with encased FRP confined concrete cores", Sensors, 19(8), 1792. https://doi.org/10.3390/s19081792. 
  47. Won, D.H., Han, T.H., Kim, S., Lee, J.H. and Kang, Y.J. (2014), "Confining effect of concrete in double-skinned composite tubular columns", Comput. Concrete, 14(5), 613-633. https://doi.org/10.12989/cac.2014.14.5.613. 
  48. Xiamuxi, A. and Hasegawa, A. (2012), "A study on axial compressive behaviors of reinforced concrete filled tubular steel columns", J. Constr. Steel Res., 76, 144-154. https://doi.org/10.1016/j.jcsr.2012.03.023. 
  49. Xie, T. and Ozbakkaloglu, T. (2015), "Behavior of steel fiberreinforced high-strength concrete-filled FRP tube columns under axial compression", Eng. Struct., 90, 158-171. https://doi.org/10.1016/j.engstruct.2015.02.020. 
  50. Zhao, P., Zsaki, A.M. and Nokken, M.R. (2018), "Using digital image correlation to evaluate plastic shrinkage cracking in cement-based materials", Constr. Build. Mater., 182, 108-117. https://doi.org/10.1016/j.conbuildmat.2018.05.239. 
  51. Zhao, Y., Bi, J., Wang, Z., Huo, L., Guan, J., Zhao, Y. and Sun, Y. (2021), "Numerical simulation of the casting process of steel fiber reinforced self-compacting concrete: Influence of material and casting parameters on fiber orientation and distribution", Constr. Build. Mater., 312, 125337. https://doi.org/10.1016/j.conbuildmat.2021.125337. 
  52. Zerfu, K. and Yadeta, R. (2023), "Finite element-based performance analysis of encased composite columns under monotonic axial compression load", Adv. Civil Eng., 2023, 1-12. https://doi.org/10.1155/2023/5974705.