DOI QR코드

DOI QR Code

Lithium and exercise ameliorate insulin-deficient hyperglycemia by independently attenuating pancreatic α-cell mass and hepatic gluconeogenesis

  • Su-Ryun Jung (College of Pharmacy, Keimyung University) ;
  • Ji-Hye Lee (Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Hanguk Ryu (Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Yurong Gao (Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Jaemin Lee (Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
  • Received : 2023.08.11
  • Accepted : 2023.11.02
  • Published : 2024.01.01

Abstract

As in type 1 diabetes, the loss of pancreatic β-cells leads to insulin deficiency and the subsequent development of hyperglycemia. Exercise has been proposed as a viable remedy for hyperglycemia. Lithium, which has been used as a treatment for bipolar disorder, has also been shown to improve glucose homeostasis under the conditions of obesity and type 2 diabetes by enhancing the effects of exercise on the skeletal muscles. In this study, we demonstrated that unlike in obesity and type 2 diabetic conditions, under the condition of insulin-deficient type 1 diabetes, lithium administration attenuated pancreatic a-cell mass without altering insulin-secreting β-cell mass, implying a selective impact on glucagon production. Additionally, we also documented that lithium downregulated the hepatic gluconeogenic program by decreasing G6Pase protein levels and upregulating AMPK activity. These findings suggest that lithium's effect on glucose metabolism in type 1 diabetes is mediated through a different mechanism than those associated with exercise-induced metabolic changes in the muscle. Therefore, our research presents the novel therapeutic potential of lithium in the treatment of type 1 diabetes, which can be utilized along with insulin and independently of exercise.

Keywords

Acknowledgement

This study was supported by the DGIST R&D Program and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT and Ministry of Education to S.-R.J. (NRF-2020S1A5A2A01045700), J.L. (NRF-2020M3A9D8038660, 23-CoE-BT-04), and J.-H.L. (NRF-2019R1A6A3A01094138).

References

  1. Shorter E. The history of lithium therapy. Bipolar Disord. 2009;11 Suppl 2(Suppl 2):4-9.  https://doi.org/10.1111/j.1399-5618.2009.00706.x
  2. Jung S, Koh J, Kim S, Kim K. Effect of lithium on the mechanism of glucose transport in skeletal muscles. J Nutr Sci Vitaminol (Tokyo). 2017;63:365-371.  https://doi.org/10.3177/jnsv.63.365
  3. Jung SR, Park SY, Koh JH, Kim JY. Lithium enhances exercise-induced glycogen breakdown and insulin-induced AKT activation to facilitate glucose uptake in rodent skeletal muscle. Pflugers Arch. 2021;473:673-682.  https://doi.org/10.1007/s00424-021-02543-0
  4. Haugaard ES, Mickel RA, Haugaard N. Actions of lithium ions and insulin on glucose utilization, glycogen synthesis and glycogen synthase in the isolated rat diaphragm. Biochem Pharmacol. 1974;23:1675-1685.  https://doi.org/10.1016/0006-2952(74)90394-3
  5. Zhang J, Anshul F, Malhotra DK, Jaume J, Dworkin LD, Gong R. Microdose lithium protects against pancreatic islet destruction and renal impairment in streptozotocin-elicited diabetes. Antioxidants (Basel). 2021;10:138. 
  6. Wu KK, Huan Y. Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol. 2008;Chapter 5:Unit 5.47. 
  7. Jung SR. Effects of lithium chloride and/or endurance exercise treatment on the metabolic syndrome of high fat induced obese rats during 4 weeks. Exerc Sci. 2019;28:401-408.  https://doi.org/10.15857/ksep.2019.28.4.401
  8. Khan A, Jamwal S, Bijjem KR, Prakash A, Kumar P. Neuroprotective effect of hemeoxygenase-1/glycogen synthase kinase-3β modulators in 3-nitropropionic acid-induced neurotoxicity in rats. Neuroscience. 2015;287:66-77.  https://doi.org/10.1016/j.neuroscience.2014.12.018
  9. Wong RK, Boedeker B, Hickey TM, Wilkinson DS, Johnson LF. Lithium chloride: protective and antisecretory properties in rats. Gastroenterology. 1984;87:362-371.  https://doi.org/10.1016/0016-5085(84)90714-5
  10. Tondo L, Alda M, Bauer M, Bergink V, Grof P, Hajek T, Lewitka U, Licht RW, Manchia M, Muller-Oerlinghausen B, Nielsen RE, Selo M, Simhandl C, Baldessarini RJ; International Group for Studies of Lithium (IGSLi). Clinical use of lithium salts: guide for users and prescribers. Int J Bipolar Disord. 2019;7:16. 
  11. Grandjean EM, Aubry JM. Lithium: updated human knowledge using an evidence-based approach: part III: clinical safety. CNS Drugs. 2009;23:397-418.  https://doi.org/10.2165/00023210-200923050-00004
  12. Wang N, Liu Y, Ma Y, Wen D. High-intensity interval versus moderate-intensity continuous training: Superior metabolic benefits in diet-induced obesity mice. Life Sci. 2017;191:122-131.  https://doi.org/10.1016/j.lfs.2017.08.023
  13. Kemi OJ, Loennechen JP, Wisloff U, Ellingsen O. Intensity-controlled treadmill running in mice: cardiac and skeletal muscle hypertrophy. J Appl Physiol (1985). 2002;93:1301-1309.  https://doi.org/10.1152/japplphysiol.00231.2002
  14. McQuin C, Goodman A, Chernyshev V, Kamentsky L, Cimini BA, Karhohs KW, Doan M, Ding L, Rafelski SM, Thirstrup D, Wiegraebe W, Singh S, Becker T, Caicedo JC, Carpenter AE. CellProfiler 3.0: next-generation image processing for biology. PLoS Biol. 2018;16:e2005970. 
  15. Snitow ME, Bhansali RS, Klein PS. Lithium and therapeutic targeting of GSK-3. Cells. 2021;10:255. 
  16. Hsu FL, Huang CF, Chen YW, Yen YP, Wu CT, Uang BJ, Yang RS, Liu SH. Antidiabetic effects of pterosin A, a small-molecular-weight natural product, on diabetic mouse models. Diabetes. 2013;62:628-638.  https://doi.org/10.2337/db12-0585
  17. Ko JR, Seo DY, Park SH, Kwak HB, Kim M, Ko KS, Rhee BD, Han J. Aerobic exercise training decreases cereblon and increases AMPK signaling in the skeletal muscle of STZ-induced diabetic rats. Biochem Biophys Res Commun. 2018;501:448-453.  https://doi.org/10.1016/j.bbrc.2018.05.009
  18. Tokumitsu H, Sakagami H. Molecular mechanisms underlying Ca2+/calmodulin-dependent protein kinase kinase signal transduction. Int J Mol Sci. 2022;23:11025. 
  19. Jiang SJ, Dong H, Li JB, Xu LJ, Zou X, Wang KF, Lu FE, Yi P. Berberine inhibits hepatic gluconeogenesis via the LKB1-AMPK-TORC2 signaling pathway in streptozotocin-induced diabetic rats. World J Gastroenterol. 2015;21:7777-7785.  https://doi.org/10.3748/wjg.v21.i25.7777
  20. Garcia D, Shaw RJ. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell. 2017;66:789-800.  https://doi.org/10.1016/j.molcel.2017.05.032
  21. Luo L, Jiang S, Huang D, Lu N, Luo Z. MLK3 phophorylates AMPK independently of LKB1. PLoS One. 2015;10:e0123927. 
  22. Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D, Hardie DG. Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem. 1996;271:27879-27887.  https://doi.org/10.1074/jbc.271.44.27879
  23. Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, Frenguelli BG, Hardie DG. Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2005;2:9-19.  https://doi.org/10.1016/j.cmet.2005.05.009
  24. Herrero-Martin G, Hoyer-Hansen M, Garcia-Garcia C, Fumarola C, Farkas T, Lopez-Rivas A, Jaattela M. TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J. 2009;28:677-685. Erratum in: EMBO J. 2009;28:1532. 
  25. Lee J, Sun C, Zhou Y, Lee J, Gokalp D, Herrema H, Park SW, Davis RJ, Ozcan U. p38 MAPK-mediated regulation of Xbp1s is crucial for glucose homeostasis. Nat Med. 2011;17:1251-1260.  https://doi.org/10.1038/nm.2449
  26. Bosch F, Rodriguez-Gil JE, Hatzoglou M, Gomez-Foix AM, Hanson RW. Lithium inhibits hepatic gluconeogenesis and phosphoenolpyruvate carboxykinase gene expression. J Biol Chem. 1992;267:2888-2893.  https://doi.org/10.1016/S0021-9258(19)50669-X
  27. Bao H, Zhang Q, Liu X, Song Y, Li X, Wang Z, Li C, Peng A, Gong R. Lithium targeting of AMPK protects against cisplatin-induced acute kidney injury by enhancing autophagy in renal proximal tubular epithelial cells. FASEB J. 2019;33:14370-14381.  https://doi.org/10.1096/fj.201901712R
  28. Feng AL, Xiang YY, Gui L, Kaltsidis G, Feng Q, Lu WY. Paracrine GABA and insulin regulate pancreatic alpha cell proliferation in a mouse model of type 1 diabetes. Diabetologia. 2017;60:1033-1042.  https://doi.org/10.1007/s00125-017-4239-x
  29. Takeda Y, Fujita Y, Honjo J, Yanagimachi T, Sakagami H, Takiyama Y, Makino Y, Abiko A, Kieffer TJ, Haneda M. Reduction of both beta cell death and alpha cell proliferation by dipeptidyl peptidase-4 inhibition in a streptozotocin-induced model of diabetes in mice. Diabetologia. 2012;55:404-412.  https://doi.org/10.1007/s00125-011-2365-4
  30. Rijal S, Jang SH, Park SJ, Han SK. Lithium enhances the GABAergic synaptic activities on the hypothalamic preoptic area (hPOA) neurons. Int J Mol Sci. 2021;22:3908. 
  31. Malhi GS, Tanious M, Das P, Coulston CM, Berk M. Potential mechanisms of action of lithium in bipolar disorder. Current understanding. CNS Drugs. 2013;27:135-153.  https://doi.org/10.1007/s40263-013-0039-0
  32. Sinaei M, Alaei H, Nazem F, Kargarfard M, Feizi A, Talebi A, Esmaeili A, Nobari H, Perez-Gomez J. Endurance exercise improves avoidance learning and spatial memory, through changes in genes of GABA and relaxin-3, in rats. Biochem Biophys Res Commun. 2021;566:204-210.  https://doi.org/10.1016/j.bbrc.2021.05.080
  33. Maddock RJ, Casazza GA, Fernandez DH, Maddock MI. Acute modulation of cortical glutamate and GABA content by physical activity. J Neurosci. 2016;36:2449-2457.  https://doi.org/10.1523/JNEUROSCI.3455-15.2016
  34. Rinaman L. A functional role for central glucagon-like peptide-1 receptors in lithium chloride-induced anorexia. Am J Physiol. 1999;277:R1537-R1540. 
  35. Hamasaki H. Exercise and glucagon-like peptide-1: does exercise potentiate the effect of treatment? World J Diabetes. 2018;9:138-140.  https://doi.org/10.4239/wjd.v9.i8.138
  36. Riddell MC, Peters AL. Exercise in adults with type 1 diabetes mellitus. Nat Rev Endocrinol. 2023;19:98-111. https://doi.org/10.1038/s41574-022-00756-6