DOI QR코드

DOI QR Code

Effects of yeast and dried kratom leaves (Mitragyna speciosa [Korth] Havil.) supplementation on digestibility, rumen fermentation, blood metabolites and nitrogen balance in goats

  • Soklin Va (Animal Production Innovation and Management Division, Faculty of Natural Resources, Hat Yai Campus, Prince of Songkla University) ;
  • Chanadol Supapong (Department of Animal Science, Faculty of Agriculture, Rajamangala University of Technology Srivijaya) ;
  • Pin Chanjula (Animal Production Innovation and Management Division, Faculty of Natural Resources, Hat Yai Campus, Prince of Songkla University)
  • Received : 2023.04.24
  • Accepted : 2023.08.28
  • Published : 2024.02.01

Abstract

Objective: The objective of the experiment was to study yeast supplementation (yeast, Y) and dried kratom leaves (DKTL) on the digestibility, ruminal fermentation, blood metabolites and nitrogen balance in goats. Methods: Four of 7 to 8 months old male crossbred (50% Thai Native-Anglo Nubian) goats with average liveweight 20±0.13 kg were randomly assigned according to a 2×2 factorial arrangement in a 4×4 Latin square design to receive four diets ad libitum basis. The study investigated the effects of two levels of yeast (Y) supplementation (Y, 0 and 0.5g/kg dry matter [DM]) along with two levels of DKTL supplementation (DKTL, 0 and 4.44g/kg DM). The experimental groups were as follows: T1 = control group with 0Y+0DKTL, T2 = 0Y+4.44 DKTL, T3 = 0.5Y+0DKTL, and T4 = 0.5Y+4.44 DKTL. Results: The results showed that there were no interactions between Y levels and DKTL levels with respect to total DM intake, but there were significant effects (p<0.05) by levels of Y; goats receiving 0.05 g/kg DM Y had higher than goats fed 0.0 g/kg DM on average (kg/d). A percentage of body weight (% BW) and grams per kilogram of metallic weight (g/kg w0.75) had no influence on yeast levels and DKTL, but there was a difference (p<0.05) by yeast level Y at 0.5 g/kg DM, being higher compared to the non-supplemented group. Apparent digestibility coefficient of nutrition in the form of (DM, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber) was an increased trend in the Y-level complementary group at 0.5 g/kg DM and DKTL at 4.44 g/kg DM, respectively. Protozoa populations decreased in the group receiving Y levels at 0.5 g/kg DM and DKTL levels at 4.44 g/kg DM when compared to group T1. The acetic acid concentration and methane gas generation decreased (p<0.05) in the group receiving Y levels of 0.5 g/kg DM and DKTL levels of 4.44 g/kg DM, while the amount of propionic acid increased (p<0.05). Conclusion: Effects of feeding combinations of Y and DKTL supplementation on feed showed no interaction effect (Y×DKTL) on feed intake, rumen fermentation, bacterial and fungi population. The effect on protozoal populations was lower in the group that was supplemented with DKTL at 4.44 g/kg DM related to synthetic CH4 was reduced.

Keywords

Acknowledgement

The authors would like to thank the staff at the Animal Production Innovation and Management Division, the Faculty of Natural Resources, Hat Yai Campus, Prince of Songkla University. The study was financially supported from the Research program CoE-ANRB: phase 3.

References

  1. Hashemi SR, Davoodi H. Herbal plants and their derivatives as growth and health promoters in animal nutrition. Vet Res Commun 2011;35:169-80. https://doi.org/10.1007/s11259-010-9458-2
  2. Abou-Elkhair R, Ahmed HA, Selim S. Effects of black pepper (Piper Nigrum), turmeric powder (Curcuma Longa) and coriander seeds (Coriandrum Sativum) and their combinations as feed additives on growth performance, carcass traits, some blood parameters and humoral immune response of broiler chickens. Asian-Australas J Anim Sci 2014;27:847-56. https://doi.org/10.5713/ajas.2013.13644
  3. Opsi F, Fortina R, Tassone S, Bodas R, Lopez S. Effects of inactivated and live cells of Saccharomyces cerevisiae on in vitro ruminal fermentation of diets with different forage: concentrate ratio. J Agric Sci 2012;150:271-83. https://doi.org/10.1017/S0021859611000578
  4. Nocek JE, Kautz WP, Leedle JAZ, Block E. Direct-fed microbial supplementation on the performance of dairy cattle during the transition period. J Dairy Sci 2003;86:331-5. https://doi.org/10.3168/jds.S0022-0302(03)73610-8
  5. Chaucheyras-Durand F, Walker ND, Bach A. Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future. Anim Feed Sci Technol 2008;145:5-26. https://doi.org/10.1016/j.anifeedsci.2007.04.019
  6. Sriranga KR, Singh AK, Harini KR, et al. Insights of herbal supplements during transition period in dairy animals: An updated review. Iran J Appl Anim Sci 2021;11:419-29.
  7. Chanjula P, Wungsintaweekul J, Chiarawipa R, et al. Effect of feed supplement containing dried kratom leaves on apparent digestibility, rumen fermentation, serum antioxidants, hematology, and nitrogen balance in goats. Fermentation 2022;8:131. https://doi.org/10.3390/fermentation8030131
  8. Eastlack SC, Cornett EM, Kaye AD. Kratom-Pharmacology, clinical implications, and outlook: a comprehensive review. Pain Ther 2020;9:55-69. https://doi.org/10.6084/m9.figshare.11567916
  9. Hagerman AE, Butler LG. Choosing appropriate methods and standards for assaying tannin. J Chem Ecol 1989;15:1795-810. https://doi.org/10.1007/BF01012267
  10. Suntara C, Cherdthong A, Wanapat M, et al. Isolation and characterization of yeasts from rumen fluids for potential use as additives in ruminant feeding. Vet Sci 2021;8:52. https://doi.org/10.3390/vetsci8030052
  11. National Research Council (NRC). Nutrient requirements of sheep. Washington DC, USA: National Academies Press; 1985.
  12. Association of Official Analytical Chemist (AOAC). Official methods of analysis of the association of official analytical chemists, Vol. II, 15th ed. Arlington, VA, USA: AOAC; 1990.
  13. Van Soest PV, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 1991;74:3583-97. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  14. Jamil M, Mirza B, Qayyum M. Isolation of antibacterial compounds from Quercus dilatata L. through bioassay guided fractionation. Ann Clin Microbiol Antimicrob 2012;11:11. https://doi.org/10.1186/1476-0711-11-11
  15. Makkar HPS, Becker K. Vanillin-HCl method for condensed tannins: effect of organic solvents used for extraction of tannins. J Chem Ecol 1993;19:613-21. https://doi.org/10.1007/BF00984996
  16. Association of Official Analytical Chemist (AOAC). The Official Methods of Analysis of the Association of Official Analytical Chemist, 16th ed. Arlington, VA, USA: AOAC; 1998.
  17. Chen XB, Hovell FD, Orskov ER, Brown DS. Excretion of purine derivatives by ruminants: effect of exogenous nucleic acid supply on purine derivative excretion by sheep. Br J Nutr 1990;63:131-42. https://doi.org/10.1079/BJN19900098
  18. Chen XB, Gomes MJ. Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivatives: an overview of the technical details. Bucksburn Aberdeen, UK: International Feed Resources Unit; 1992.
  19. Samuel M, Sagathewan S, Thomas J, Mathen G. An HPLC method for estimation of volatile fatty acids in rumimd fluid. Indian J Anim Sci 1997;67:805-7.
  20. Moss AR, Jouany JP, Newbold J. Methane production by ruminants: its contribution to global warming. Ann Zootech 2000;49:231-53. https://doi.org/10.1051/animres:2000119
  21. Edwards JE, Huws SA, Kim EJ, Kingston-Smith AH. Characterization of the dynamics of initial bacterial colonization of nonconserved forage in the bovine rumen. FEMS Microbiol Ecol 2007;62:323-35. https://doi.org/10.1111/j.1574-6941.2007.00392.x
  22. Galyean M. Laboratory procedure in animal nutrition research. Las Cruces, NM, USA: Department of Animal and Life Science, New Mexico State University, USA. 1989;188:543.
  23. Steel RG, Torrie JH. Principles and procedures of statistics, a biometrical approach. New York, NY, USA: McGraw-Hill Kogakusha, Ltd.; 1980.
  24. Prevete E, Hupli A, Marrinan S, et al. Exploring the use of Kratom (Mitragyna speciosa) via the YouTube data tool: A novel netnographic analysis. Emerg Trends Drugs Addict Health 2021;1:100007. https://doi.org/10.1016/j.etdah.2021.100007
  25. Phesatcha B, Viennasay B, Wanapat M. Potential use of Flemingia (Flemingia macrophylla) as a protein source fodder to improve nutrients digestibility, ruminal fermentation efficiency in beef cattle. Anim Biosci 2021;34:613-20. https://doi.org/10.5713/ajas.20.0214
  26. Kong L, Yang C, Dong L, et al. Rumen fermentation characteristics in pre- and post-weaning calves upon feeding with mulberry leaf flavonoids and candida tropicalis individually or in combination as a supplement. Animals 2019;9:990. https://doi.org/10.3390/ani9110990
  27. Van Urk H, Voll WL, Scheffers WA, Van Dijken JP. Transientstate analysis of metabolic fluxes in Crabtree-positive and Crabtree-negative yeasts. Appl Environ Microbiol 1990;56:281-7. https://doi.org/10.1128/aem.56.1.281-287.1990
  28. Cavins JF, Kwolek WF, Inglett GE, Cowan JC. Amino acid analysis of soybean meal: interlaboratory study. J Assoc Off Anal Chem 1972;55:686-91. https://doi.org/10.1093/jaoac/55.4.686
  29. Habeeb AAM. Importance of yeast in ruminants feeding on production and reproduction. Ecol Evol Biol 2017;2:49-58. https://doi.org/10.11648/j.eeb.20170204.11
  30. Arowolo MA, He J. Use of probiotics and botanical extracts to improve ruminant production in the tropics: A review. Anim Nutr 2018;4:241-9. https://doi.org/10.1016/j.aninu.2018.04.010
  31. Dias ALG, Freitas JA, Micai B, Azevedo RA, Greco LF, Santos JEP. Effects of supplementing yeast culture to diets differing in starch content on performance and feeding behavior of dairy cows. J Dairy Sci 2018;101:186-200. https://doi.org/10.3168/jds.2017-13240
  32. Garcia CC, Mendoza MG, Gonzalez MS, Cobos PM, Ortega ́ CM, Ramirez LR. Effect of a yeast culture (Saccharomyces cerevisiae) and monensin on ruminal fermentation and digestion in sheep. Anim Feed Sci Technol 2000;83:165-70. https://doi.org/10.1016/S0377-8401(99)00126-1
  33. Sultana N, Alimon AR, Huque KS, et al. The feeding value of Moringa (Moringa oleifera) foliage as replacement to conventional concentrate diet in Bengal goats. Adv Anim Vet Sci 2015;3:164-73. https://doi.org/10.14737/journal.aavs/2015/3.3.164.173
  34. Su B, Chen X. Current status and potential of Moringa oleifera leaf as an alternative protein source for animal feeds. Front Vet Sci 2020;7:53. https://doi.org/10.3389/fvets.2020.00053
  35. Cieslak A, Zmora P, Matkowski A, et al. Tannins from Sanguisorba officinalis affect in vitro rumen methane production and fermentation. J Anim Plant Sci 2016;26:54-62.
  36. Firkins JL. Maximizing microbial protein synthesis in the rumen. J Nutr 1996;126:1347S-54S. https://doi.org/10.1093/jn/126.suppl_4.1347S
  37. Phesatcha K, Wanapat M. Tropical legume supplementation influences microbial protein synthesis and rumen ecology. J Anim Physiol Anim Nutr 2017;101:552-62. https://doi.org/10.1111/jpn.12458
  38. Chanjula P, Wungsintaweekul J, Chiarawipa R, et al. Effect of feed supplement containing dried kratom leaves on apparent digestibility, rumen fermentation, serum antioxidants, hematology, and nitrogen balance in goats. Fermentation 2022;8:131. https://doi.org/10.3390/fermentation8030131
  39. Anantasook N, Wanapat M, Cherdthong A. Manipulation of ruminal fermentation and methane production by supplementation of rain tree pod meal containing tannins and saponins in growing dairy steers. Anim Physiol Anim Nutr 2014;98:50-5. https://doi.org/10.1111/jpn.12029
  40. Patra AK, Yu Z. Effects of vanillin, quillaja saponin, and essential oils on in vitro fermentation and protein-degrading microorganisms of the rumen. Appl Microbiol Biotechnol 2014;98:897-905. https://doi.org/10.1007/s00253-013-4930-x
  41. Vicknasingam B, Narayanan S, Beng GT, Mansor SM. The informal use of ketum (Mitragyna speciosa) for opioid withdrawal in the northern states of peninsular Malaysia and implications for drug substitution therapy. Int J Drug Policy 2010;21:283-8. https://doi.org/10.1016/j.drugpo.2009.12.003
  42. Phesatcha K, Wanapat M. Tropical legume supplementation influences microbial protein synthesis and rumen ecology. J Anim Physiol Anim Nutr 2017;101:552-62. https://doi.org/10.1111/jpn.12458
  43. Wanapat M, Gunun P, Anantasook N, Kang S. Changes of rumen pH, fermentation and microbial population as influenced by different ratios of roughage (rice straw) to concentrate in dairy steers. J Agric Sci 2014;152:675-85. https://doi.org/10.1017/S0021859613000658
  44. Ampapon T, Phesatcha K, Wanapat M. Effects of phytonutrients on ruminal fermentation, digestibility, and microorganisms in swamp buffaloes. Animals 2019;9:671. https://doi.org/10.3390/ani9090671
  45. Broderick GA, Grabber JH, Muck RE, Hymes-Fecht UC. Replacing alfalfa silage with tannin-containing birdsfoot trefoil silage in total mixed rations for lactating dairy cows. J Dairy Sci 2017;100:3548-62. https://doi.org/10.3168/jds.2016-12073
  46. Phesatcha B, Phesatcha K, Wanapat M. Mitragyna speciosa Korth Leaf pellet supplementation on feed intake, nutrient digestibility, rumen fermentation, microbial protein synthesis and protozoal population in Thai native beef cattle. Animals 2022;12:3238. https://doi.org/10.3390/ani12233238
  47. Soltan YA, Natel AS, Araujo RC, Morsy AS, Abdalla AL. Progressive adaptation of sheep to a microencapsulated blend of essential oils: Ruminal fermentation, methane emission, nutrient digestibility, and microbial protein synthesis. Anim Feed Sci Technol 2018;237:8-18. https://doi.org/10.1016/j.anifeedsci.2018.01.004
  48. Viennasay B, Totakul P, Matra M, Phesatcha B, Wanapat M. Influence of bamboo grass (Tiliacora triandra, Diels) pellet supplementation on in vitro fermentation and methane mitigation. J Sci Food Agric 2022;102:4927-32. https://doi.org/10.1002/jsfa.11858
  49. Yang K, Wei C, Zhao GY, Xu ZW, Lin SX. Effects of dietary supplementing tannic acid in the ration of beef cattle on rumen fermentation, methane emission, microbial flora and nutrient digestibility. J Anim Physiol Anim Nutr 2017;101:302-10. https://doi.org/10.1111/jpn.12531
  50. Cherdthong A, Prachumchai R, Wanapat M. In vitro evaluations of pellets containing Delonix regia seed meal for ruminants. Trop Anim Health Prod 2019;51:2003-10. https://doi.org/10.1007/s11250-019-01903-4
  51. Williams PE, Tait CA, Innes GM, Newbold CJ. Effects of the inclusion of yeast culture (Saccharomyces cerevisiae plus growth medium) in the diet of dairy cows on milk yield and forage degradation and fermentation patterns in the rumen of steers. J Anim Sci 1991;69:3016-26. https://doi.org/10.2527/1991.6973016x