과제정보
This study was supported by Shandong Provincial Natural Science Foundation (ZR2022QC075), Shandong "Double Tops" Program (SYL2017YSTD12), and Shandong Province Pig Industry Technology System Project (SDAIT-08-02).
참고문헌
- Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol 2015;4:180-3. https://doi.org/10.1016/j.redox.2015.01.002
- Li Z, Bi R, Sun S, et al. The role of oxidative stress in acute ischemic stroke-related thrombosis. Oxid Med Cell Longev 2022;2022:8418820. https://doi.org/10.1155/2022/8418820
- Srinivas US, Tan BWQ, Vellayappan BA, Jeyasekharan AD. Ros and the dna damage response in cancer. Redox Biol 2019;25:101084. https://doi.org/10.1016/j.redox.2018.101084
- Burton GJ, Jauniaux E. Oxidative stress. Best Pract Res Clin Obstet Gynaecol 2011;25:287-99. https://doi.org/10.1016/j.bpobgyn.2010.10.016
- Aw TY. Intestinal glutathione: determinant of mucosal peroxide transport, metabolism, and oxidative susceptibility. Toxicol Appl Pharmacol 2005;204:320-8. https://doi.org/10.1016/j.taap.2004.11.016
- Luissint A, Parkos CA, Nusrat A. Inflammation and the intestinal barrier: leukocyte-epithelial cell interactions, cell junction remodeling, and mucosal repair. Gastroenterology 2016;151:616-32. https://doi.org/10.1053/j.gastro.2016.07.008
- Zheng P, Yu B, He J, et al. Protective effects of dietary arginine supplementation against oxidative stress in weaned piglets. Br J Nutr 2013;109:2253-60. https://doi.org/10.1017/S0007114512004321
- Cao S, Wu H, Wang C, et al. Diquat-induced oxidative stress increases intestinal permeability, impairs mitochondrial function, and triggers mitophagy in piglets. J Anim Sci 2018;96:1795-805. https://doi.org/10.1093/jas/sky104
- Amaral PP, Dinger ME, Mattick JS. Non-coding rnas in homeostasis, disease and stress responses: an evolutionary perspective. Brief Funct Genomics 2013;12:254-78. https://doi.org/10.1093/bfgp/elt016
- Ma Q. Transcriptional responses to oxidative stress: pathological and toxicological implications. Pharmacol Ther 2010;125:376-93. https://doi.org/10.1016/j.pharmthera.2009.11.004
- Bonasio R, Shiekhattar R. Regulation of transcription by long noncoding rnas. Annu Rev Genet 2014;48:433-55. https://doi.org/10.1146/annurev-genet-120213-092323
- Quinodoz S, Guttman M. Long noncoding rnas: an emerging link between gene regulation and nuclear organization. Trends Cell Biol 2014;24:651-63. https://doi.org/10.1016/j.tcb.2014.08.009
- Fatica A, Bozzoni I. Long non-coding rnas: new players in cell differentiation and development. Nat Rev Genet 2014;15:7-21. https://doi.org/10.1038/nrg3606
- Tehrani SS, Karimian A, Parsian H, Majidinia M, Yousefi B. Multiple functions of long non-coding rnas in oxidative stress, dna damage response and cancer progression. J Cell Biochem 2018;119:223-36. https://doi.org/10.1002/jcb.26217
- Gao Q, Zhang C, Li JX, et al. Melatonin attenuates h2o2-induced oxidative injury by upregulating lncrna neat1 in ht22 hippocampal cells. Int J Mol Sci 2022;23:12891. https://doi.org/10.3390/ijms232112891
- Xie W, Shu T, Peng H, et al. Lncrna h19 inhibits oxidative stress injury of cochlear hair cells by regulating mir-653-5p/sirt1 axis. Acta Biochim Biophys Sin (Shanghai) 2022;54:332-9. https://doi.org/10.3724/abbs.2022018
- Magalhaes N, Carvalho F, Dinis-Oliveira RJ. Human and experimental toxicology of diquat poisoning: toxicokinetics, mechanisms of toxicity, clinical features, and treatment. Hum Exp Toxicol 2018;37:1131-60. https://doi.org/10.1177/0960327118765330
- Li Z, Chen W, Qin M, Wang L, Zeng Y. Characteristics of circrnas expression profiles in the piglets intestine induced by oxidative stress. Genes Genomics 2022;44:425-33. https://doi.org/10.1007/s13258-021-01154-4
- Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one fastq preprocessor. Bioinformatics 2018;34:i884-90. https://doi.org/10.1093/bioinformatics/bty560
- Kim D, Langmead B, Salzberg SL. Hisat: a fast spliced aligner with low memory requirements. Nat Methods 2015;12:357-60. https://doi.org/10.1038/nmeth.3317
- Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. Stringtie enables improved reconstruction of a transcriptome from rna-seq reads. Nat Biotechnol 2015;33:290-5. https://doi.org/10.1038/nbt.3122
- Liao Y, Smyth GK, Shi W. Featurecounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014;30:923-30. https://doi.org/10.1093/bioinformatics/btt656
- Pertea G, Pertea M. Gff utilities: gffread and gffcompare [version 2; Peer review: 3 approved]. F1000Res 2020;9:304. https://doi.org/10.12688/f1000research.23297.2
- Kang Y, Yang D, Kong L, et al. Cpc2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res 2017;45:W12-6. https://doi.org/10.1093/nar/gkx428
- Sun L, Luo H, Bu D, et al. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res 2013;41:e166. https://doi.org/10.1093/nar/gkt646
- Mistry J, Chuguransky S, Williams L et al. Pfam: the protein families database in 2021. Nucleic Acids Res 2021;49:D412-9. https://doi.org/10.1093/nar/gkaa913
- Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for rna-seq data with deseq2. Genome Biol 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8
- Quinlan AR, Hall IM. Bedtools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010;26:841-2. https://doi.org/10.1093/bioinformatics/btq033
- Venkatesan A, Barik A, Paul D, Muthaiyan M, Das R. Identification of novel lncrna by reanalysis of rna-seq data in zika virus infected hinpcs. Virusdisease 2022;33:185-93. https://doi.org/10.1007/s13337-022-00771-1
- Mukaka MM. Statistics corner: a guide to appropriate use of correlation coefficient in medical research. Malawi Med J 2012;24:69-71.
- Sherman BT, Hao M, Qiu J, et al. David: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res 2022;50:W216-21. https://doi.org/10.1093/nar/gkac194
- Florea L, Song L, Salzberg SL. Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues. F1000Res 2013;2:188. https://doi.org/10.12688/f1000research.2-188.v2
- Schmittgen TD, Livak KJ. Analyzing real-time pcr data by the comparative ct method. Nat Protoc 2008;3:1101-8. https://doi.org/10.1038/nprot.2008.73
- Gou HZ, Zhang YL, Ren LF, et al. How do intestinal probiotics restore the intestinal barrier? Front Microbiol 2022;13:929346. https://doi.org/10.3389/fmicb.2022.929346
- Li Z, Chen W, Qin M, Wang L, Zeng Y. Characteristics of circrnas expression profiles in the piglets intestine induced by oxidative stress. Genes Genomics 2022;44:425-33. https://doi.org/10.1007/s13258-021-01154-4
- Wang J, Li Z, Yang D, et al. Diquat determines a deregulation of lncrna and mrna expression in the liver of postweaned piglets. Oxid Med Cell Longev 2019;2019:9148535. https://doi.org/10.1155/2019/9148535
- Yuan S, Chen D, Zhang K, Yu B. Effects of oxidative stress on growth performance, nutrient digestibilities and activities of antioxidative enzymes of weanling pigs. Asian-Australas J Anim Sci 2007;20:1600-5. https://doi.org/10.5713/ajas.2007.1600
- Zheng P, Yu B, Lv M, Chen D. Effects of oxidative stress induced by diquat on arginine metabolism of postweaning pigs. Asian-Australas J Anim Sci 2010;23:98-105. https://doi.org/10.5713/ajas.2010.90270
- Zhang TN, Wang W, Yang N, et al. Regulation of glucose and lipid metabolism by long non-coding rnas: facts and research progress. Front Endocrinol (Lausanne) 2020;11:457. https://doi.org/10.3389/fendo.2020.00457
- Wang S, Chen Z, Gu J, Chen X, Wang Z. The role of lncrna pcat6 in cancers. Front Oncol 2021;11:701495. https://doi.org/10.3389/fonc.2021.701495
- Ma L, Qin M, Zhang Y, et al. Identification and functional prediction of long non-coding rnas related to skeletal muscle development in duroc pigs. Anim Biosci 2022;35:1512-23. https://doi.org/10.5713/ab.22.0020
- Moon KM, Lee B, Kim DH, HY Chung. Foxo6 inhibits melanogenesis partly by elevating intracellular antioxidant capacity. Redox Biol 2020;36:101624. https://doi.org/10.1016/j.redox.2020.101624
- Bang E, Kim DH, Chung HY. Protease-activated receptor 2 induces ros-mediated inflammation through akt-mediated nf-κb and foxo6 modulation during skin photoaging. Redox Biol 2021;44:102022. https://doi.org/10.1016/j.redox.2021.102022
- Xu J, Wu L, Zhang Y, et al. Activation of ampk by osu53 protects spinal cord neurons from oxidative stress. Oncotarget 2017;8:112477-86. https://doi.org/10.18632/oncotarget.22055
- Maharajan N, Ganesan CD, Moon C, Jang CH, Oh WK, Cho GW. Licochalcone d ameliorates oxidative stress-induced senescence via ampk activation. Int J Mol Sci 2021;22:7324. https://doi.org/10.3390/ijms22147324
- Singh V, Ubaid S. Role of silent information regulator 1 (sirt1) in regulating oxidative stress and inflammation. Inflammation 2020;43:1589-98. https://doi.org/10.1007/s10753-020-01242-9
- Basak D, Uddin MN, Hancock J. The role of oxidative stress and its counteractive utility in colorectal cancer (crc). Cancers (Basel) 2020;12:3336. https://doi.org/10.3390/cancers12113336
- Carini F, Mazzola M, Rappa F, et al. Colorectal carcinogenesis: role of oxidative stress and antioxidants. Anticancer Res 2017;37:4759-66. https://doi.org/10.21873/anticanres.11882
- Bian Y, Alem D, Beato F, et al. Development of sos1 inhibitor-based degraders to targetkras-mutant colorectal cancer. J Med Chem 2022;65:16432-50. https://doi.org/10.1021/acs.jmedchem.2c01300