과제정보
This work was supported by the MAFF Commissioned project study on "Development of Technologies to Reduce Greenhouse Gas Emissions in the Livestock Sector" (Grant Number JPJ011299).
참고문헌
- Myhre G, Shindell D, Breon FM, et al. Anthropogenic and natural radiative forcing. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press; 2013.
- Shibata M, Terada F. Factors affecting methane production and mitigation in ruminants. Anim Sci J 2010;81:2-10. https://doi.org/10.1111/j.1740-0929.2009.00687.x
- Gerber PJ, Steinfeld H, Henderson B, et al. Tackling climate change through livestock-A global assessment of emissions and mitigation opportunities. Rome, Italy: Food and Agriculture Organization of the United Nations (FAO); 2013.
- Shibata M, Terada F, Iwasaki K, Kurihara M, Nishida T. Methane production in heifers, sheep and goats consuming diets of various hay-concentrate ratios. Anim Sci Technol 1992;63:1221-7. https://doi.org/10.2508/chikusan.63.1221
- Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C. Livestock's long shadow: Environmental issues and options. Rome, Italy: Food and Agriculture Organization of the United Nations (FAO); 2006.
- Johnson KA, Johnson DE. Methane emissions from cattle. J Anim Sci 1995;73:2483-92. https://doi.org/10.2527/1995.7382483x
- Garnsworthy PC, Difford GF, Bell MJ, et al. Comparison of methods to measure methane for use in genetic evaluation of dairy cattle. Animals 2019;9:837. https://doi.org/10.3390/ani9100837
- Lassen J, Difford GF. Genetic and genomic selection as a methane mitigation strategy in dairy cattle. Animal 2020;14:s473-83. https://doi.org/10.1017/S1751731120001561
- Stranden I, Kantanen J, Lidauer MH, Mehtio T, Negussie E. Animal board invited review: Genomic-based improvement of cattle in response to climate change. Animal 2022;16:100673. https://doi.org/10.1016/j.animal.2022.100673
- Knapp JR, Laur GL, Vadas PA, Weiss WP, Tricarico JM. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J Dairy Sci 2014;97:3231-61. https://doi.org/10.3168/jds.2013-7234
- Madsen J, Bjerg BS, Hvelplund T, Weisbjerg MR, Lund P. Methane and carbon dioxide ratio in excreted air for quantification of the methane production from ruminants. Livest Sci 2010;129:223-7. https://doi.org/10.1016/j.livsci.2010.01.001
- Garnsworthy PC, Craigon J, Hernandez-Medrano JH, Saunders N. On-farm methane measurements during milking correlate with total methane production by individual dairy cows. J Dairy Sci 2012;95:3166-80. https://doi.org/10.3168/jds.2011-4605
- Lassen J, Lovendahl P, Madsen J. Accuracy of noninvasive breath methane measurements using Fourier transform infrared methods on individual cows. J Dairy Sci 2012;95:890-8. https://doi.org/10.3168/jds.2011-4544
- Oikawa K, Kamiya Y, Terada F, Suzuki T. The influence of breath concentration in the gas sample on the accuracy of methane to carbon dioxide ratio using the sniffer method in dairy cows. Anim Sci J 2022;93:e13745. https://doi.org/10.1111/asj.13745
- Tedeschi LO, Abdalla AL, Alvarez C, et al. Quantification of methane emitted by ruminants: a review of methods. J Anim Sci 2022;100:skac197. https://doi.org/10.1093/jas/skac197
- Suzuki T, Kamiya Y, Oikawa K, et al. Prediction of enteric methane emissions from lactating cows using methane to carbon dioxide ratio in the breath. Anim Sci J 2021;92:e13637. https://doi.org/10.1111/asj.13637
- de Haas Y, Pszczola M, Soyeurt H, Wall E, Lassen J. Invited review: Phenotypes to genetically reduce greenhouse gas emissions in dairying. J Dairy Sci 2017;100:855-70. https://doi.org/10.3168/jds.2016-11246
- Tyrrell HF, Reid JT. Prediction of the energy value of cow's milk. J Dairy Sci 1965;48:1215-23. https://doi.org/10.3168/jds.S0022-0302(65)88430-2
- Richardson CM, Nguyen TTT, Abdelsayed M, et al. Genetic parameters for methane emission traits in Australian dairy cows. J Dairy Sci 2021;104:539-49. https://doi.org/10.3168/jds.2020-18565
- Gilmour AR, Gogel BJ, Cullis BR, Welham S, Thompson R. ASReml user guide release 4.1 structural specification. Hemel Hempstead, UK: VSN International, Ltd.; 2015.
- de Haas Y, Windig JJ, Calus MPL, et al. Genetic parameters for predicted methane production and potential for reducing enteric emissions through genomic selection. J Dairy Sci 2011;94:6122-34. https://doi.org/10.3168/jds.2011-4439
- Pickering NK, Chagunda MGG, Banos G, Mrode R, McEwan JC, Wall E. Genetic parameters for predicted methane production and laser methane detector measurements. J Anim Sci 2015;93:11-20. https://doi.org/10.2527/jas.2014-8302
- Yin T, Pinent T, Brugemann K, Simianer H, Konig S. Simulation, prediction, and genetic analyses of daily methane emissions in dairy cattle. J Dairy Sci 2015;98:5748-62. https://doi.org/10.3168/jds.2014-8618
- van Engelen S, Bovenhuis H, Dijkstra J, Van Arendonk JAM, Visker MHPW. Genetic study of methane production predicted from milk fat composition in dairy cows. J Dairy Sci 2015;98:8223-6. https://doi.org/10.3168/jds.2014-8989
- Kandel PB, Vanrobays ML, Vanlierde A, et al. Genetic parameters of mid-infrared methane predictions and their relationships with milk production traits in Holstein cattle. J Dairy Sci 2017;100:5578-91. https://doi.org/10.3168/jds.2016-11954
- Bell MJ, Potterton SL, Craigon J, et al. Variation in enteric methane emissions among cows on commercial dairy farms. Animal 2014;8:1540-6. https://doi.org/10.1017/S1751731114001530
- Olijhoek DW, Difford GF, Lund P, Lovendahl P. Phenotypic modeling of residual feed intake using physical activity and methane production as energy sinks. J Dairy Sci 2020;103:6967-81. https://doi.org/10.3168/jds.2019-17489
- Pszczola M, Rzewuska K, Mucha S, Strabel T. Heritability of methane emissions from dairy cows over a lactation measured on commercial farms. J Anim Sci 2017;95:4813-9. https://doi.org/10.2527/jas2017.1842
- van Breukelen AE, Aldridge MA, Veerkamp RF, de Haas Y. Genetic parameters for repeatedly recorded enteric methane concentrations of dairy cows. J Dairy Sci 2022;105:4256-71. https://doi.org/10.3168/jds.2021-21420
- Pedersen S, Blanes-Vidal V, Jorgensen H, et al. Carbon dioxide production in animal houses: a literature review. Agricultural Engineering International 2008;8:1-19.
- Huhtanen P, Cabezas-Garcia EH, Utsumi S, Zimmerman S. Comparison of methods to determine methane emissions from dairy cows in farm conditions. J Dairy Sci 2015;98:3394-409. https://doi.org/10.3168/jds.2014-9118
- van Engelen S, Bovenhuis H, Van der Tol PPJ, Visker MHPW. Genetic background of methane emission by Dutch Holstein Friesian cows measured with infrared sensors in automatic milking systems. J Dairy Sci 2018;101:2226-34. https://doi.org/10.3168/jds.2017-13441
- Manzanilla-Pech CIV, Lovendahl P, Gordo DM, et al. Breeding for reduced methane emission and feed-efficient Holstein cows: An international response. J Dairy Sci 2021;104:8983-9001. https://doi.org/10.3168/jds.2020-19889
- Falconer DS. Introduction to quantitative genetics. 4th ed. Harlow, Essex, UK: Longmans Green; 1996.