DOI QR코드

DOI QR Code

Coated cysteamine, a potential feed additive for ruminants - An updated review

  • Muhammad Umar Yaqoob (Provincial Key Agricultural Enterprise Research Institute of King Techina, Hangzhou King Techina Feed Co., Ltd.) ;
  • Jia Hou (Provincial Key Agricultural Enterprise Research Institute of King Techina, Hangzhou King Techina Feed Co., Ltd.) ;
  • Li Zhe (Provincial Key Agricultural Enterprise Research Institute of King Techina, Hangzhou King Techina Feed Co., Ltd.) ;
  • Yingying Qi (Provincial Key Agricultural Enterprise Research Institute of King Techina, Hangzhou King Techina Feed Co., Ltd.) ;
  • Peng Wu (Provincial Key Agricultural Enterprise Research Institute of King Techina, Hangzhou King Techina Feed Co., Ltd.) ;
  • Xiangde Zhu (Provincial Key Agricultural Enterprise Research Institute of King Techina, Hangzhou King Techina Feed Co., Ltd.) ;
  • Xiaoli Cao (Provincial Key Agricultural Enterprise Research Institute of King Techina, Hangzhou King Techina Feed Co., Ltd.) ;
  • Zhefeng Li (Provincial Key Agricultural Enterprise Research Institute of King Techina, Hangzhou King Techina Feed Co., Ltd.)
  • Received : 2023.07.04
  • Accepted : 2023.09.06
  • Published : 2024.02.01

Abstract

For sustainable development, better performance, and less gas pollution during rumen fermentation, there is a need to find a green and safe feed additive for ruminants. Cysteamine (CS) is a biological compound naturally produced in mammalian cells. It is widely used as a growth promoter in ruminants because of its ability to control hormone secretions. It mainly controls the circulating concentration of somatostatin and enhances growth hormone production, leading to improved growth performance. CS modulates the rumen fermentation process in a way beneficial for the animals and environment, leading to less methane production and nutrients loss. Another beneficial effect of using CS is that it improves the availability of nutrients to the animals and enhances their absorption. CS also works as an antioxidant and protects the cells from oxidative damage. In addition, CS has no adverse effects on bacterial and fungal alpha diversity in ruminants. Dietary supplementation of CS enhances the population of beneficial microorganisms. Still, no data is available on the use of CS on reproductive performance in ruminants, so there is a need to evaluate the effects of using CS in breeding animals for an extended period. In this review, the action mode of CS was updated according to recently published data to highlight the beneficial effects of using CS in ruminants.

Keywords

Acknowledgement

We acknowledge the the financial support provided by the Zhejiang Provincial Science and Technology Cooperation Program (No. 2023SNJF049) and the Key R&D Projects in Zhejiang Province (grant no. 2021C02007) for this submission.

References

  1. Velazco JI, Cottle DJ, Hegarty RS. Methane emissions and feeding behaviour of feedlot cattle supplemented with nitrate or urea. Anim Prod Sci 2014;54:1737-40. https://doi.org/10.1071/AN14345 
  2. Hristov AN, Oh J, Giallongo F, et al. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proc Natl Acad Sci USA 2015;112:10663-8. https://doi.org/10.1073/pnas.1504124112 
  3. Argente J, Pozo J, Chowen JA. The growth hormone axis: control and effects. Horm Res 1996;45:9-11. https://doi.org/10.1159/000184818 
  4. Wathes DC, Perks CM, Davis AJ, Denning-Kendall PA. Regulation of insulin-like growth factor-I and progesterone synthesis by insulin and growth hormone in the ovine ovary. Biol Reprod 1995;53:882-9. https://doi.org/10.1095/biolreprod53.4.882 
  5. Galbraith H. Hormones in international meat production: biological, sociological and consumer issues. Nutr Res Rev 2002;15:293-314. https://doi.org/10.1079/NRR200246 
  6. McElwain KV, Estienne MJ, Barb CR. Effect of cysteamine hydrochloride on secretion of growth hormone in male swine. Life Sci 1999;64:2233-8. https://doi.org/10.1016/s0024-3205(99)00183-6 
  7. Sagar SM, Landry D, Millard WJ, Badger TM, Arnold MA, Martin JB. Depletion of somatostatin-like immunoreactivity in the rat central nervous system by cysteamine. J Neurosci 1982;2:225-31. https://doi.org/10.1523/JNEUROSCI.02-02-00225.1982
  8. Vasin MV. Comments to the mechanism of protective and pharmacological action of radioprotectors from the family of aminothiols. J Radioprot Res 2014;2:15-36. https://doi.org/10.12966/jrr.06.03.2014 
  9. McLeod KR, Harmon DL, Schillo KK, Mitchell GE Jr. Cysteamine-induced depletion of somatostatin in sheep: time course of depletion and changes in plasma metabolites, insulin, and growth hormone. J Anim Sci 1995;73:77-87. https://doi.org/10.2527/1995.73177x 
  10. Yang JD, Li JG, Li Y, Cao YF, Liu RC. Effects of cysteamine on performance, nutrient digestibility and serum biochemical indices of beef cattle. Chin J Anim Nutr 2006;18:261-6. (Chinese). 
  11. Bin J, Cui-mei X, Jiang-sheng D. Effects of cysteamine on weight gain and wool gain in female lambs. Heilongjiang J Anim Sci Vet Med 2003;11. (Chinese) 
  12. Jia-dong Y, Jian-guo L, Ying L, Yu-feng C, Rong-chang L. Effects of cysteamine on performance, nutrient digestibility and serum biochemical indices in beef cattle. Chin Anim Sci 2006;4. (Chinese) 
  13. Liu N, Wang JQ, Liu ZY, Chen YK, Wang JP. Effect of cysteamine hydrochloride supplementation on the growth performance, enterotoxic status, and glutathione turnover of broilers fed aflatoxin B1 contaminated diets. Poult Sci 2018;97:3594-600. https://doi.org/10.3382/ps/pey206 
  14. Barnett MC, Hegarty RS. Cysteamine hydrochloride increases bodyweight and wool fibre length, improves feed conversion ratio and reduces methane yield in sheep. Anim Prod Sci 2014;54:1288-93. https://doi.org/10.1071/AN14364 
  15. Besouw M, Masereeuw R, van den Heuvel L, Levtchenko E. Cysteamine: an old drug with new potential. Drug Discov Today 2013;18:785-92. https://doi.org/10.1016/j.drudis.2013.02.003 
  16. Desai S, Hartman C, Grimes P, Shah S. Topical stabilized cysteamine as a new treatment for hyperpigmentation disorders: melasma, post-inflammatory hyperpigmentation, and lentigines. J Drugs Dermatol 2021;20:1276-9. https://doi.org/10.36849/JDD.6367 
  17. Eldjam L, Pihl A, Mitchell JS, Holmes BE, Smith CL. On the mechanism of chemical protection against ionizing radiation. The interaction of cysteamine and cystamine with proteins, In: 4th international conference on progress in radiobiology; 1956. Cambridge, UK. pp. 249-57. 
  18. O'Toole TJ, Sharma S. Physiology, somatostatin. In: StatPearls. StatPearls Publishing, Treasure Island; 2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK538327 
  19. Peters GE. Distribution and metabolism of exogenous somatostatin in the rat. Regul Pept 1982;3:361-9. https://doi.org/10.1016/0167-0115(82)90059-3 
  20. Montoro JB, Galard R, Catalan R, Martinez J, Salvador P, Sabin P. Stability of somatostatin in total parenteral nutrition. Pharm Weekbl 1990;12:240-2. https://doi.org/10.1007/BF01967824 
  21. Bousquet M, Gibrat C, Ouellet M, Rouillard C, Calon F, Cicchetti F. Cystamine metabolism and brain transport properties: clinical implications for neurodegenerative diseases. J Neurochem 2010;114:1651-8. https://doi.org/10.1111/j.1471-4159.2010.06874.x
  22. Liu G, Wei Y, Wang Z, Wu D, Zhou A. Effects of dietary supplementation with cysteamine on growth hormone receptor and insulin-like growth factor system in finishing pigs. J Agric Food Chem 2008;56:5422-7. https://doi.org/10.1021/jf800575p 
  23. Szabo S, Deng X, Khomenko T, et al. New molecular mechanisms of duodenal ulceration. Ann NY Acad Sci 2007;1113:238-55. https://doi.org/10.1196/annals.1391.033 
  24. Haenen GR, Vermeulen NP, Timmerman H, Bast A. Effect of thiols on lipid peroxidation in rat liver microsomes. Chem Biol Interact 1989;71:201-12. https://doi.org/10.1016/0009-2797(89)90035-5
  25. de Matos DG, Furnus CC, Moses DF, Baldassarre H. Effect of cysteamine on glutathione level and developmental capacity of bovine oocyte matured in vitro. Mol Reprod Dev 1995;42:432-6. https://doi.org/10.1002/mrd.1080420409 
  26. Kessler A, Biasibetti M, da Silva Melo DA, et al. Antioxidant effect of cysteamine in brain cortex of young rats. Neurochem Res 2008;33:737-44. https://doi.org/10.1007/s11064-007-9486-7
  27. Winterbourn CC, Hampton MB. Thiol chemistry and specificity in redox signaling. Free Radic Biol Med 2008;45:549-61. https://doi.org/10.1016/j.freeradbiomed.2008.05.004 
  28. Wu G, Fang YZ, Yang S, Lupton JR, Turner ND. Glutathione metabolism and its implications for health. J Nutr 2004;134:489-92. https://doi.org/10.1093/jn/134.3.489 
  29. Cognie Y, Baril G, Poulin N, Mermillod P. Current status of embryo technologies in sheep and goat. Theriogenology 2003;59:171-88. https://doi.org/10.1016/s0093-691x(02)01270-0 
  30. Kobayashi M, Lee ES, Fukui Y. Cysteamine or beta-mercaptoethanol added to a defined maturation medium improves blastocyst formation of porcine oocytes after intracytoplasmic sperm injection. Theriogenology 2006;65:1191-9. https://doi.org/10.1016/j.theriogenology.2005.06.019 
  31. Prescott LF, Stewart MJ, Proudfoot AT. Cysteamine or N-acetylcysteine for paracetamol poisoning?. Br Med J 1978;1:856-7.  https://doi.org/10.1136/bmj.1.6116.856-a
  32. Hu R, Wang Z, Peng Q, et al. Effects of GHRP-2 and cysteamine administration on growth performance, somatotropic axis hormone and muscle protein deposition in yaks (Bos grunniens) with growth retardation. PloS one 2016;11:e0149461. https://doi.org/10.1371/journal.pone.0149461 
  33. Sun YK, Yan XG, Ban ZB, Yang HM, Hegarty RS, Zhao YM. The effect of cysteamine hydrochloride and nitrate supplementation on in-vitro and in-vivo methane production and productivity of cattle. Anim Feed Sci Technol 2017;232:49-56. https://doi.org/10.1016/j.anifeedsci.2017.03.016 
  34. Wu QC, Wang WK, Zhang F, et al. Dietary cysteamine supplementation remarkably increased feed efficiency and shifted rumen fermentation toward glucogenic propionate production via enrichment of Prevotella in feedlot lambs. Microorganisms 2022;10:1105. https://doi.org/10.3390/microorganisms10061105 
  35. Yanling W, Zhentian L, Xiutian D, Caijun H, Tengyun G. Effects of cysteamine on the milk yield and plasma levels of somatostatin and growth hormone in dairy cow. Chin J Anim Sci 1999;6:14-5 (Chinese). 
  36. Li C, Tianshui L, Feng C, Jinxian H. Effects of cysteamine preparation on dairy performance. J Shanghai Jiaotong University 2001;4. (Chinese) 
  37. Lunzhi X, Kai Z, Guoyuan X, Dong W, Dong C. Effects of cysteamine on performance and serum hormone levels in lactating dairy cows. China Herbivores 2004;24:6-8. (Chinese) 
  38. Wang C, Dong CJ, Wang ZQ, et al. Effect of cysteamine hydrochloride supplementation on the milk performance of dairy cow. Livest Sci 2015;178:94-9. https://doi.org/10.1016/j.livsci.2015.05.005 
  39. Jia B , Zhao R, Yan G,, Luo Q, Chen J. Effect of cysteamine on wool growth and expression of GH receptor, IGF-1 and type 1 IGF receptors mRNA in the skin of sheep. J Nanjing Agric Univ 2005;28:80-4. (Chinese) 
  40. Du G, Shi Z, Xia D, et al. Cysteamine improves growth performance and gastric ghrelin expression in preweaning piglets. Domest Anim Endocrinol 2012;42:203-9. https://doi.org/10.1016/j.domaniend.2011.12.003 
  41. Ueno H, Yamaguchi H, Kangawa K, Nakazato M. Ghrelin: a gastric peptide that regulates food intake and energy homeostasis. Regul Pept 2005;126:11-9. https://doi.org/10.1016/j.regpep.2004.08.007 
  42. Liu H, Yang H, Zhu J, et al. Effects of cysteamine hydrochloride on apparent nutrient digestibility, serum biochemical and antioxidant indices of lactating dairy cows. Acta Vet Zootech Sinic 2015;46:416-23. https://doi.org/10.11843/j.issn.0366-6964.2015.03.010 (Chinese) 
  43. Shen ZM, Zhang RF, Xie HM, Chen F, Lu TS. Effects of cysteamine compound (lactonin) on milk production and immune function of high yielding cows during weeks 20 through 42 of lactation. Acta Vet Zootech Sin 2005;36:667-73. 
  44. Wang ZR, Ren MQ, Xu QF, Zhu ZK, Luo QJ, Chen J. Effects of enveloped cysteamine on buffalo rumen digestion and metabolism. J Xinjiang Agric Univ 2002;25:42-7. (Chinese). 
  45. McLeod KR, Bauer ML, Harmon DL, Reynolds CK, Mitchell GE Jr. Effects of exogenous somatostatin and cysteamine on net nutrient flux across the portal-drained viscera and liver of sheep during intraduodenal infusion of starch hydrolysate and casein. J Anim Sci 1997;75:3026-37. https://doi.org/10.2527/1997.75113026x 
  46. Mackle TR, Dwyer DA, Ingvartsen KL, Chouinard PY, Ross DA, Bauman DE. Effects of insulin and postruminal supply of protein on use of amino acids by the mammary gland for milk protein synthesis. J Dairy Sci 2000;83:93-105. https://doi.org/10.3168/jds.S0022-0302(00)74860-0 
  47. Heath T. Dukes' Physiology of domestic animals. Aust Vet J 1994;71:187. https://doi.org/10.1111/j.1751-0813.1994.tb03389.x 
  48. Wu T, Liang J, Wang T, et al. Cysteamine-supplemented diet for cashmere goats: A potential strategy to inhibit rumen biohydrogenation and enhance plasma antioxidant capacity. Front Vet Sci 2022;9:997091. https://doi.org/10.3389/fvets.2022.997091 
  49. Zhou X, Zhang N, Zhang J, et al. Microbiome and fermentation parameters in the rumen of dairy buffalo in response to ingestion associated with a diet supplemented with cysteamine and hemp seed oil. J Anim Physiol Anim Nutr 2022;106:471-84. https://doi.org/10.1111/jpn.13616 
  50. Bergman EN. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev 1990;70:567-90. https://doi.org/10.1152/physrev.1990.70.2.567 
  51. Quanjun W, Shengyong M, Hongxia Z, Weiyun Z. Effects of cysteamine on in vitro fermentation by rumen microbes from goats. J Huazhong Agric Univ 2002;21:535-9. (Chinese) 
  52. Barnett MC, Goopy JP, McFarlane JR, Godwin IR, Nolan JV, Hegarty RS. Triiodothyronine influences digesta kinetics and methane yield in sheep. Anim Prod Sci 2012;52:572-7. https://doi.org/10.1071/AN11303 
  53. Liu Z, Shen Y, Han Z. Effects of cysteamine on the digestion and metabolism in sheep. Acta Vet Zootech Sin 1996;27:212-9. 
  54. Knapp JR, Laur GL, Vadas PA, Weiss WP, Tricarico JM. Invited review: Enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions. J Dairy Sci 2014;97:3231-61. https://doi.org/10.3168/jds.2013-7234 
  55. Qiu HZ. Effect of cysteamine on fatty acid composition in rat tissues and its mechanism [Masters thesis]. Nanjing, China: Nanjing Agricultural University; 2009. 
  56. Liu L. Effect of malic acid and octadecanic fatty acids on rumen fatty acids metabolization and methane production in vitro [Masters thesis]. Beijing, China: Chinese Academy of Agricultural Sciences; 2008. 
  57. Gao J, Jing Y, Wang M, Shi L, Liu S. The effects of the unsaturated degree of long-chain fatty acids on the rumen microbial protein content and the activities of transaminases and dehydrogenase in vitro. J Integr Agric 2016;15:424-31.  https://doi.org/10.1016/S2095-3119(15)61081-4
  58. Fan Q, Wanapat M, Yan T, Hou F. Altitude influences microbial diversity and herbage fermentation in the rumen of yaks. BMC Microbiol 2020;20:370. https://doi.org/10.1186/s12866-020-02054-5 
  59. Cui X, Wang Z, Tan Y, et al. Selenium yeast dietary supplement affects rumen bacterial population dynamics and fermentation parameters of Tibetan sheep (Ovis aries) in alpine meadow. Front Microbiol 2021;12:663945. https://doi.org/10.3389/fmicb.2021.663945 
  60. Liu H, Xu T, Xu S, et al. Effect of dietary concentrate to forage ratio on growth performance, rumen fermentation and bacterial diversity of Tibetan sheep under barn feeding on the Qinghai-Tibetan plateau. PeerJ 2019;7:e7462. https://doi.org/10.7717/peerj.7462 
  61. Ramalho JB, Soares MB, Spiazzi CC, et al. In vitro probiotic and antioxidant potential of Lactococcus lactis subsp. cremoris LL95 and its effect in mice behaviour. Nutrients 2019;11:901. https://doi.org/10.3390/nu11040901 
  62. Xiong L, Ni X, Niu L, et al. Isolation and preliminary screening of a weissella confusa strain from giant panda (Ailuropoda melanoleuca). Probiotics Antimicrob Proteins 2019;11:535-44. https://doi.org/10.1007/s12602-018-9402-2 
  63. Fusco V, Quero GM, Cho GS, et al. The genus Weissella: taxonomy, ecology and biotechnological potential. Front Microbiol 2015;6:155. https://doi.org/10.3389/fmicb.2015.00155 
  64. Thomas F, Hehemann JH, Rebuffet E, Czjzek M, Michel G. Environmental and gut bacteroidetes: the food connection. Front Microbiol 2011;2:93. https://doi.org/10.3389/fmicb.2011.00093 
  65. McMahon CD, Radcliff RP, Lookingland KJ, Tucker HA. Neuroregulation of growth hormone secretion in domestic animals. Domest Anim Endocrinol 2001;20:65-87. https://doi.org/10.1016/s0739-7240(01)00084-4 
  66. Le Roith D, Bondy C, Yakar S, Liu JL, Butler A. The somatomedin hypothesis: 2001. Endocr Rev 2001;22:53-74. https://doi.org/10.1210/edrv.22.1.0419 
  67. Wang Z‚ Xu Q‚ Ren M‚ Luo Q‚ Chen J. Effects of cysteamine on goat rumen digestion and metabolism. China Herbivores 2002;117:42-5. https://doi.org/10.16863/j.cnki.1003-6377.2002.04.013 (Chinese). 
  68. Shokrollahi B, Fazli A, Morammazi S, Saadati N, Ahmad HI, Hassan FU. Cysteamine administration in lambs grazing on mountain pastures: Effects on the body weight, antioxidant capacity, thyroid hormones and growth hormone secretion. Vet Med Sci 2022;8:328-35. https://doi.org/10.1002/vms3.644 
  69. Kirkwood RN, Thacker PA, Laarveld B. The influence of growth hormone injections on the endocrine and metabolic status of gilts. Domest Anim Endocrinol 1989;6:167-76. https://doi.org/10.1016/0739-7240(89)90045-3 
  70. Kleinberg DL. Role of IGF-I in normal mammary development. Breast Cancer Res Treat 1998;47:201-8. https://doi.org/10.1023/A:1005998832636 
  71. Wood PL, Khan MA, Moskal JR. Cellular thiol pools are responsible for sequestration of cytotoxic reactive aldehydes: central role of free cysteine and cysteamine. Brain Res 2007;1158:158-63. https://doi.org/10.1016/j.brainres.2007.05.007 
  72. Ruan W, Kleinberg DL. Insulin-like growth factor I is essential for terminal end bud formation and ductal morphogenesis during mammary development. Endocrinology 1999;140:5075-81. https://doi.org/10.1210/endo.140.11.7095 
  73. Le Roith D, Neuenschwander S, Wood TL, Henninghausen L. Insulin-like growth factor-I and insulin-like growth factor binding protein-3 inhibit involution of the mammary gland following lactation: studies in transgenic mice. Progr Growth Factor Res 1995;6:433-6. https://doi.org/10.1016/0955-2235(96)00009-9 
  74. Kleinberg DL, Ruan W. IGF-I, GH, and sex steroid effects in normal mammary gland development. J Mammary Gland Biol Neoplasia 2008;13:353-60. https://doi.org/10.1007/s10911-008-9103-7 
  75. Weismann D, Hartvigsen K, Lauer N. Complement factor H binds malondialdehyde epitopes and protects from oxidative stress. Nature 2011;478:76-81. https://doi.org/10.1038/nature10449 
  76. Jove M, Mota-Martorell N, Pradas I, Martin-Gari M, Ayala V, Pamplona R. The advanced lipoxidation end-product malondialdehyde-lysine in aging and longevity. Antioxidants 2020;9:1132. https://doi.org/10.3390/antiox9111132 
  77. Zhang ZY, Yang MF, Wang T, et al. Cysteamine alleviates early brain injury via reducing oxidative stress and apoptosis in a rat experimental subarachnoid hemorrhage model. Cell Mol Neurobiol 2015;35:543-53. https://doi.org/10.1007/s10571-014-0150-x
  78. Zhou P, Wu YG, Li Q, et al. The interactions between cysteamine, cystine and cumulus cells increase the intracellular glutathione level and developmental capacity of goat cumulus-denuded oocytes. Reproduction 2008;135:605-11. https://doi.org/10.1530/REP-08-0003 
  79. Jeitner TM, Lawrence DA. Mechanisms for the cytotoxicity of cysteamine. Toxicol Sci 2001;63:57-64. https://doi.org/10.1093/toxsci/63.1.57