References
- Bergqvist C, Ezzedine K. (2020). Vitiligo: A Review. Dermatology. 236(6), 571–92. https://doi.org/10.1159/000506103
- Taieb A, Alomar A, Böhm M, Dell'Anna ML, De Pase A, Eleftheriadou V, Ezzedine, K, et al. (2013). Guidelines for the management of vitiligo: The European Dermatology Forum consensus. Br J Dermarol. 168(1), 5–19. https://doi.org/10.1111/j.1365-2133.2012.11197.x
- The Committee of Dermatology and Surgery textbook. (2007). Text of Traditional Korean Dermatology and Surgery. Seoul: The Committee of Dermatology and Surgery textbook.
- Lee KJ, Jun HJ, Lee JW, Hwang H, Shin HT, Byeon J, Choi SG, et al. (2024). A Clinical Study on the Recurrence of Non-Segmental Vitiligo. Korean J Dermatology. 6(62), 327–35.
- Hong YH, Kim SW, Cho YC. (2015). Four cases of Soyangins vitiligo patients gotten better by Oriental medical treatment who have the symptoms in the hands. J Korean Med Ophthalmol Otolaryngol Dermatol. 28(1), 152–9. https://10.6114/jkood.2015.28.1.152
- Jung JH, Seo HS. (2005). One Case Report of Vitiligo. J Korean Med Ophthalmol Otolaryngol Dermatol. 18(3), 121–6.
- SG Park, SH Park, SH Lee, JY Lee. (2020). A Review of Clinical Researches for Herbal Medicine Treatment on Vitiligo. J Pediatr Korean Med. 34(2), 57–74. https://doi.org/10.7778/jpkm.2020.34.2.57
- Lee JH, Kim SY. (2014). Four cases of vitiligo patients treated by Oriental medical treatment who have experienced Excimer Laser treatment. J Korean Med Ophthalmol Otolaryngol Dermatol. 27(3),205–12. https://10.6114/jkood.2014.27.3.205
- Lei Y, Zhang SG, Wang JJ. (2016). Observation of Curative Effect of Chinese Medicine Combined with NB-UVB in Treatment of Vitiligo. World Chin Med. 11(8), 1451-3. https://10.3969j.issn.1673.7202.2016.08.015 https://doi.org/10.3969j.issn.1673.7202.2016.08.015
- Ryu G, Kim EJ, Kim M, Kim JH, Lee Y, Jin D, Jung H, et al. (2021). Psoraleae Semen Ethanol Extract Inhibits RANKL-Induced Osteoclast Differentiation and Osteoclast Specific Genes Expression. Korean Journal of Acupuncture. 38(3), 140-50. https://10.14406/acu.2021.016
- Kwon HT, Seo BI, Kim SH, Kim MR. (1997). A Study on the Effects of Psoraleae Fructus in Ovariectomized Rat Model of Postmenopausal Osteoporosis. J of Herbology. 12(2), 21-8.
- Oh MS, Kim DR, Kim SY, Chang MS, Park SK. (2005). Antioxidant Effects of Psoraleae Fructus in GC-1 Cells. Korean J. Oriental Physiology & Pathology. 19(1), 81-6.
- Lv Q, Chen G, He H, Yang L. Zhao L, Zhang K, Chen C. et al. (2003). TCMBank-the largest TCM database provides deep learning-based Chinese-Western medicine exclusion prediction. Signal Transduction and Targeted Therapy. 8(127), 1-3. https://10.1038/s41392-023-01339-1
- Kim K, Lee D, Kim HY, Kim S, Lyu JH, Park S, Park Y, et al. (2023). Anti-Inflammatory Effects of Spirodela polyrhiza (L.) SCHLEID. Extract on Contact Dermatitis in Mice-Its Active Compounds and Molecular Targets. Int J Mol Sci. 24(17), 13271. https://doi.org/10.3390/ijms241713271
- Pinero J, Bravo A, Queralt-Rosinach N, Gutierrez-Sacristan A, Deu-Pons J, Centeno E, Garcia-Garcia, J, et al. (2017). DisGeNET: Acomprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 45(D1), D833-9. https://10.1093/nar/gkw943
- Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Iny S, et al. (2016). The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics. 2016(54), 1.30.1-1.30.33. https://10.1002/cpbi.5
- Davis AP, Wiegers TC, Sciaky D, Barkalow F, Strong M, Wyatt B, Jolene W, et al. (2024). Comparative toxicogenomics database's 20th anniversary: update 2025. Nucleic Acids Res. 10(1), 1-7. https://10.1093/nar/gkae883/7816860
- Tang D, Chen M, Huang X, Zhang G, Zeng L, Zhang G, Wu S, et al. (2023). SRplot: A free online platform for data visualization and graphing. PLoS One. 18(11), e0294236. https://10.1371/journal.pone.0294236
- Pei C, Shao LL, Liu J, Shi H Bin, Feng J. (2020). Study on the mechanism of Carthami Flos in treating retinal vein occlusion based on network pharmacology and molecular docking technology. Nat Prod Res Dev. 32(11), 1844-51. https://10.16333/j.1001-6880.2020.11.006
- SD Lee. (1995). A Documentary Study on Herb, Dms used for Vitiligo. Journal of Korean Medicine. 16(2):44-61.
- Puri N, Mojamdar M, Ramaiah A. (1987). In vitro growth characteristics of melanocytes obtained from adult normal and vitiligo subjects. J Invest Dermatol. 88(4), 434-8. https://10.1111/1523-1747.ep12469795.
- Dell'anna ML, Maresca V, Briganti S, Camera E, Falchi M, Picardo M. (2001). Mitochondrial Impairment in Peripheral Blood Mononuclear Cells During the Active Phase of Vitiligo. J Invest Dermatol. 117(4), 908-13. https://10.1046/j.0022-202x.2001.01459.x.
- Jimbow K, Chen H, Park JS, Thomas PD. (2001). Increased sensitivity of melanocytes to oxidative stress and abnormal expression of tyrosinase-related protein in vitiligo. Br J Dermatol. 144(1), 55-65. https://10.1046/j.1365-2133.2001.03952.x.
- Dell'Anna ML, Ottaviani M, Albanesi V, Vidolin AP, Leone G, Ferraro C, et al. (2007). Membrane lipid alterations as a possible basis for melanocyte degeneration in vitiligo. J Invest Dermatol. 127(5), 1226-33. https://10.1038/sj.jid.5700700.
- Yang L, Wei Y, Sun Y, Shi W, Yang J, Zhu L, Lee M. (2015). Interferon-gamma inhibits melanogenesis and induces apoptosis in melanocytes: A pivotal role of CD8+ cytotoxic T lymphocytes in vitiligo. Acta Derm Venereol. 95(6), 664-70. https://10.2340/00015555-2080.
- Nylander K, Bourdon JC, Bray SE, Gibbs NK, Kay R, Hart I, Hall PA. (2000). Transcriptional activation of tyrosinase and TRP-I by links UV irradiation to the protective tanning p53 response. J Pathol. 190(1), 39-46. https://10.1002/(SICI)1096-9896(200001)190:1<39::AID-PATH492>3.0.CO;2-V.
- Chowdhari S, Saini N. (2016). Gene expression profiling reveals the role of RIG1 like receptor signaling in p53 dependent apoptosis induced by PUVA in keratinocytes. Cell Signal. 28(1), 25-33. https://10.1016/j.cellsig.2015.10.015.
- Yin L, Pang G, Niu C, Habasi M, Dou J, Aisa HA. (2018). A novel psoralen derivative-MPFC enhances melanogenesis Via activation of p38 MAPK and PKA signaling pathways in B16 cells. Int J Mol Med. 41(6), 3727-35. https://10.3892/jmm.2018.3529.