DOI QR코드

DOI QR Code

Artificial intelligence application in endodontics: A narrative review

  • Dennis Dennis (Department of Conservative Dentistry, Faculty of Dentistry, Universitas Sumatera Utara) ;
  • Siriwan Suebnukarn (Faculty of Dentistry, Thammasat University) ;
  • Min-Suk Heo (Department of Oral and Maxillofacial Radiology School of Dentistry, Seoul National University) ;
  • Trimurni Abidin (Department of Conservative Dentistry, Faculty of Dentistry, Universitas Sumatera Utara) ;
  • Cut Nurliza (Department of Conservative Dentistry, Faculty of Dentistry, Universitas Sumatera Utara) ;
  • Nevi Yanti (Department of Conservative Dentistry, Faculty of Dentistry, Universitas Sumatera Utara) ;
  • Wandania Farahanny (Department of Conservative Dentistry, Faculty of Dentistry, Universitas Sumatera Utara) ;
  • Widi Prasetia (Department of Conservative Dentistry, Faculty of Dentistry, Universitas Sumatera Utara) ;
  • Fitri Yunita Batubara (Department of Conservative Dentistry, Faculty of Dentistry, Universitas Sumatera Utara)
  • 투고 : 2024.03.21
  • 심사 : 2024.07.01
  • 발행 : 2024.12.31

초록

Purpose: This review aimed to explore the scientific literature concerning the methodologies and applications of artificial intelligence (AI) in the field of endodontics. The findings may equip dentists with the necessary technical knowledge to understand the opportunities presented by AI. Materials and Methods: Articles published between 1992 and 2023 were retrieved through an electronic search of Medline via the PubMed, Scopus, and Google Scholar databases. The search, which was limited to articles published in English, aimed to identify relevant studies by employing the following keywords: "artificial intelligence," "machine learning," "deep learning," "endodontic," "root canal treatment," and "radiography." Ultimately, 71 studies that addressed the application of AI in endodontics were selected. Results: Numerous studies have demonstrated the effectiveness of AI applications in endodontics. These uses encompass the identification of root fractures and periapical lesions, assessment of working length, investigation of root canal system anatomy, prediction of retreatment success, and evaluation of dental pulp stem cell viability. Conclusion: AI technology is poised to advance aspects of endodontics including scheduling, patient care, management of drug-drug interactions, prognostic diagnosis, and the emerging area of robotic endodontic surgery. AI methods have demonstrated accuracy and precision in the identification, assessment, and prediction of diseases. Thus, AI can significantly improve endodontic diagnosis and treatment, increasing the overall efficacy of endodontic therapy.

키워드

참고문헌

  1. Chércoles-Ruiz A, Sánchez-Torres A, Gay-Escoda C. Endodontics, endodontic retreatment, and apical surgery versus tooth extraction and implant placement: a systematic review. J Endod 2017; 43: 679-86.
  2. Xu Y, Liu X, Cao X, Huang C, Liu E, Qian S, et al. Artificial intelligence: a powerful paradigm for scientific research. Innovation (Camb) 2021; 2: 100179.
  3. MacHoy ME, Szyszka-Sommerfeld L, Vegh A, Gedrange T, Wozniak K. The ways of using machine learning in dentistry. Adv Clin Exp Med 2020; 29: 375-84.
  4. Hwang JJ, Jung YH, Cho BH, Heo MS. An overview of deep learning in the field of dentistry. Imaging Sci Dent 2019; 49: 1-7.
  5. Rodrigues JA, Krois J, Schwendicke F. Demystifying artificial intelligence and deep learning in dentistry. Braz Oral Res 2021;35: e094.
  6. Revilla-León M, Gómez-Polo M, Vyas S, Barmak BA, Galluci GO, Att W, et al. Artificial intelligence applications in implant dentistry: a systematic review. J Prosthet Dent 2023; 129: 293-300.
  7. Thurzo A, Urbanová W, Novák B, Czako L, Siebert T, Stano P, et al. Where is the artificial intelligence applied in dentistry? systematic review and literature analysis. Healthcare (Basel) 2022;10: 1269.
  8. Samui P. Application of artificial intelligence in geo-engineering. In: Correia AG, Tinoco J, Cortez P, Lamas L, editors. Information technology in geo-engineering: Proceedings of the 3rd International Conference; 2019 Sep 29-Oct 2; Guimarães, Portugal. Cham: Springer; 2020. p. 30-44.
  9. Keskin C, Keles A. Digital applications in endodontics: an update and review. J Exp Clin Med 2021; 38(3s): 168-74.
  10. Chen YW, Stanley K, Att W. Artificial intelligence in dentistry: current applications and future perspectives. Quintessence Int 2020; 51: 248-57.
  11. Ossowska A, Kusiak A, Świetlik D. Artificial intelligence in dentistry- narrative review. Int J Environ Res Public Health 2022;19: 3449.
  12. Carrillo-Perez F, Pecho OE, Morales JC, Paravina RD, Della Bona A, Ghinea R, et al. Applications of artificial intelligence in dentistry: a comprehensive review. J Esthet Restor Dent 2022;34: 259-80.
  13. Nguyen TT, Larrivée N, Lee A, Bilaniuk O, Durand R. Use of artificial intelligence in dentistry: current clinical trends and research advances. J Can Dent Assoc 2021; 87: l7.
  14. Ren R, Luo H, Su C, Yao Y, Liao W. Machine learning in dental, oral and craniofacial imaging: a review of recent progress. PeerJ 2021; 9: e11451.
  15. Jadiya A, Dondemadahalli Manjunath T, Mohan BR. A comparative study of deep learning models for word-sense disambiguation. In: Gupta D, Sambyo K, Prasad M, Agarwal S, editors. Advanced machine intelligence and signal processing. Lecture Notes in Electrical Engineering, vol 858. Singapore: Springer; 2022. p. 245-57.
  16. Mohaideen K, Negi A, Verma DK, Kumar N, Sennimalai K, Negi A. Applications of artificial intelligence and machine learning in orthognathic surgery: a scoping review. J Stomatol Oral Maxillofac Surg 2022; 123: e962-72.
  17. Qu Y, Lin Z, Yang Z, Lin H, Huang X, Gu L. Machine learning models for prognosis prediction in endodontic microsurgery. J Dent 2022; 118: 103947.
  18. Carmody DP, McGrath SP, Dunn SM, van der Stelt PF, Schouten E. Machine classification of dental images with visual search. Acad Radiol 2001; 8: 1239-46.
  19. Kondody RT, Patil A, Devika G,Jose A, Kumar A, Nair S. Introduction to artificial intelligence and machine learning into orthodontics: areview.APOS Trends Orthod 2022; 12: 214-20.
  20. Lee JH, Kim DH, Jeong SN, Choi SH. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm. J Periodontal Implant Sci 2018; 48: 114-23.
  21. Katsumata A. Deep learning and artificial intelligence in dental diagnostic imaging. Jpn Dent Sci Rev 2023; 59: 329-33.
  22. Hatvani J, Horvath A, Michetti J, Basarab A, Kouame D, Gyongy M. Deep leaming-based super-resolution applied to dental computed tomography. IEEE Trans Radiat Plasma Med Sci 2019;3: 120-8.
  23. Choi HR, Siadari TS, Kim JE, Huh KH, Yi WJ, Lee SS, et al. Automatic detection of teeth and dental treatment patterns on dental panoramic radiographs using deep neural networks. Forensic Sci Res 2022; 7: 456-66.
  24. Hossen R, Arefin M, Nasir Uddin M. Object detection on dental X-ray images usingregion-based convolutional neural networks. In: Skala V, Singh TP, Choudhury T, Tomar R, Abul Bashar M, editors. Machine intelligence and data science applications. Lecture Notes on Data Engineering and Communications Tech-nologies, vol 132.Singapore: Springer; 2022..p.341-53.
  25. Endres MG, Hillen F, Salloumis M, Sedaghat AR, Niehues SM, Quatela O, et al. Development of a deep learning algorithm for periapical disease detection in dental radiographs. Diagnostics (Basel) 2020; 10 :430.
  26. Leite AF, Gerven A Van, Willems H, Beznik T, Lahoud P, GaêtaAraujo H, et al. Artificial intelligence-driven novel tool for tooth detection and segmentation on panoramic radiographs. Clin Oral Investig 2021; 25: 2257-67.
  27. Zheng Z, Yan H, Setzer FC, Shi KJ, Mupparapu M, Li J. Anatomically constrained deep learning for automating dental CBCT segmentation and lesion detection. IEEE Trans Autom Sci Eng 2021; 18: 603-14.
  28. Shan T, Tay FR, Gu L. Application of artificial intelligence in dentistry.JDentRes 2021; 100: 232-44.
  29. Agrawal P, Nikhade P. Artificial intelligence in dentistry: past, present, and future. Cureus 2022; 14: e27405.
  30. Poedjiastoeti W, Suebnukam S. Application of convolutional neural network in the diagnosis of jaw tumors. Healthc Inform Res 2018; 24: 236-41.
  31. Thanathornwong B, Suebnukarn S. Automatic detection of periodontal compromised teeth in digital panoramic radiographs using faster regional convolutional neural networks. Imaging Sci Dent 2020; 50: 169-74.
  32. Banerjee M. Artificial intelligence in dentistry: a ray of hope. CODS J Dent 2022; 13: 58-60.
  33. Sudeep P, Gehlot PM, Murali B, Mariswamy AB. Artificial intelligence in endodontics: a narrative review. J Int Oral Health 2023; 15: 134-41.
  34. Lai G, Dunlap C, Gluskin A, Nehme WB, Azim AA. Artificial intelligence in endodontics. J Calif Dent Assoc 2023; 51: 2199933.
  35. Ahmed ZH, Almuharib AM, Abdulkarim AA, Alhassoon AH, Alanazi AF, Alhaqbani MA, et al. Artificial intelligence and its application in endodontics: a review. J Contemp Dent Pract 2023; 24: 912-7.
  36. Sharma S. Artificial intelligence in dentistry: the current concepts and a peek into the future. Int J Contemp Med Res 2019; 6: L5-9.
  37. Asgary S. Artificial intelligence in endodontics: a scoping review. Iran Endod J 2024; 19: 85-98.
  38. Marwaha J. Artificial intelligence in conservative dentistry and endodontics: a game-changer. J Conserv Dent Endod 2023; 26: 514-8.
  39. Shen S, Liu Z, Wang J, Fan L, Ji F, Tao J. Machine learning assisted Cameriere method for dental age estimation. BMC Oral Health 2021; 21: 641.
  40. Papantonopoulos G, Takahashi K, Bountis T, Loos BG. Artificial neural networks for the diagnosis of aggressive periodontitis trained by immunologic parameters. PLoS One 2014; 9: e89757.
  41. Danks RP, Bano S, Orishko A, Tan HJ, Moreno Sancho F, D’Aiuto F, et al. Automating periodontal bone loss measurement via dental landmark localisation. Int J Comput Assist Radiol Surg 2021; 16: 1189-99.
  42. Orhan K, Bayrakdar IS, Ezhov M, Kravtsov A, Özyürek T. Evaluation of artificial intelligence for detecting periapical pathosis on cone-beam computed tomography scans. Int Endod J 2020; 53: 680-9.
  43. Hao J, Liao W, Zhang YL, Peng J, Zhao Z, Chen Z, et al. Toward clinically applicable 3-dimensional tooth segmentation via deep learning. J Dent Res 2022; 101: 304-11.
  44. Kang DY, Duong HP, Park JC. Application of deep learning in dentistry and implantology. J Implantol Appl Sci 2020; 24: 148-81.
  45. Liang Y, Han W, Qiu L, Wu C, Shao Y, Wang K, et al. Exploring forensic dental identification with deep learning. Adv Neural Inf Process Syst 2021; 34: 3244-58.
  46. Jeon SJ, Yun JP, Yeom HG, Shin WS, Lee JH, Jeong SH, et al. Deep-learning for predicting C-shaped canals in mandibular second molars on panoramic radiographs. Dentomaxillofac Radiol 2021; 50: 20200513.
  47. Ekert T, Krois J, Meinhold L, Elhennawy K, Emara R, Golla T, et al. Deep learning for the radiographic detection of apical lesions. J Endod 2019; 45: 917-22.e5.
  48. Sathorn C, Parashos P, Messer HH. How useful is root canal culturing in predicting treatment outcome? J Endod 2007; 33:220-5.
  49. Friedman S, Mor C. The success of endodontic therapy - healing and functionality. J Calif Dent Assoc 2004; 32: 493-503.
  50. Srinivasan R, Raghu R. Treatment outcomes in endodontics. J Oper Dent Endod 2016; 1: 13-7.
  51. Estrela C, Holland R, Estrela CR, Alencar AH, Sousa-Neto MD, Pécora JD. Characterization of successful root canal treatment. Braz Dent J 2014; 25: 3-11.
  52. Lin PL, Huang PY, Huang PW. Automatic methods for alveolar bone loss degree measurement in periodontitis periapical radiographs. Comput Methods Programs Biomed 2017; 148: 1-11.
  53. Lin PL, Huang PW, Huang PY, Hsu HC. Alveolar bone-loss area localization in periodontitis radiographs based on threshold segmentation with a hybrid feature fused of intensity and the H-value of fractional Brownian motion model. Comput Methods Programs Biomed 2015; 121: 117-26.
  54. Lee SJ, Chung D, Asano A, Sasaki D, Maeno M, Ishida Y, et al. Diagnosis of tooth prognosis using artificial intelligence. Diagnostics(Basel) 2022; 12: 1422.
  55. Mol A, van der Stelt PF. Application of computer-aided image interpretation to the diagnosis of periapical bone lesions. Dento-maxillofac Radiol 1992; 21: 190-4.
  56. Endres MG, Hillen F, Salloumis M, Sedaghat AR,Niehues SM, Quatela O,etal. Development ofa deep learning algorithm for periapical disease detection in dental radiographs. Diagnostics (Basel) 2020; 10: 430.
  57. Okada K, Rysavy S, Flores A, Linguraru MG. Noninvasive differential diagnosis of dental periapical lesions in cone-beam CT scans. Med Phys 2015; 42: 1653-65.
  58. Hiraiwa T, Ariji Y, Fukuda M, Kise Y, Nakata K, Katsumata A, et al. A deep-learning artificial intelligence system for as-sessment of root morphology of the mandibular first molar on panoramic radiography. Dentomaxillofac Radiol 2019; 48: 20180218.
  59. Chitnis G, Bhanushali V, Ranade A, Khadase T, Pelagade V, Chavan J. A review of machine learning methodologies for dental disease detection. 2020 IEEE India Council International Sub-sections Conference. Visakhapatnam, India. New York: IEEE; 2020.p.63-5.
  60. Warin K, Limprasert W, Suebnukarn S, Inglam S, Jantana P, Vicharueang S. Assessment of deep convolutional neural network models for mandibular fracture detection in panoramic radiographs. Int J Oral Maxillofac Surg 2022; 51: 1488-94.
  61. Fukuda M, Inamoto K, Shibata N,Ariji Y, Yanashita Y, Kut-suna S, et al. Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography. Oral Radiol 2020;36: 337-43.
  62. Shah H, Hernandez P, Budin F, Chittajallu D, Vimort JB, Walters R, et al. Automatic quantification framework to detect cracks in teeth. Proc SPIE Int Soc Opt Eng 2018: 10578: 105781K.
  63. Saghiri MA, Asgar K, Boukani KK, Lotfi M,Aghili H, Del-varani A, et al. A new approach for locating the minor apical foramen using an artificial neural network. Int Endod J 2012;45: 257-65.
  64. Saghiri MA, Garcia-Godoy F, Gutmann JL, Lotfi M, Asgar K. The reliability of artificial neural network in locating minor apical foramen: a cadaver study. J Endod 2012; 38: 1130-4.
  65. Boreak N. Effectiveness of artificial intelligence applications designed for endodontic diagnosis, decision-making, and prediction of prognosis: a systematic review. J Contemp Dent Pract 2020; 21: 926-34.
  66. Lahoud P, EzEldeen M, Beznik T, Willems H, Leite A, Van Gerven A, et al. Artificial intelligence for fast and accurate 3-dimensional tooth segmentation on cone-beam computed tomography. J Endod 2021; 47: 827-35.
  67. Campo L, Aliaga IJ, De Paz JF, Garcia AE, Bajo J, Villarubia G, et al. Retreatment predictions in odontology by means of CBR systems. Comput Intell Neurosci 2016; 2016: 7485250.
  68. Bindal P, Bindal U, Lin CW, Kasim NH, Ramasamy TS, Dabbagh A, et al. Neuro-fuzzy method for predicting the viability of stem cells treated at different time-concentration conditions. Technol Health Care 2017; 25: 1041-51.
  69. Aminoshariae A, Kulild J, Nagendrababu V. Artificial intelli-gence in endodontics: current applications and future directions. J Endod 2021; 47: 1352-7.
  70. Ghods K, Azizi A, Jafari A, Ghods K. Application of artificial intelligence in clinical dentistry, a comprehensive review of literature. J Dent(Shiraz) 2023; 24: 356-71.
  71. Bindal P, Bindal U, Kazemipoor M, Kazemipoor M, Jha SK. Hybrid machine learning approaches in viability assessment of dental pulp stem cells treated with platelet-rich concentrates on different periods. Appl Med Inform 2019; 41: 93-101.