DOI QR코드

DOI QR Code

Transplantation of human dental pulp stem cells promotes peripheral nerve regeneration after sciatic nerve injury in rats

  • Kyung-Joo Seong (Dental Science Research Institute, Department of Oral Physiology, School of Dentistry, Chonnam National University) ;
  • Won-Jae Kim (Dental Science Research Institute, Department of Oral Physiology, School of Dentistry, Chonnam National University) ;
  • Hyun-Woo Chung (Dental Science Research Institute, Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonnam National University) ;
  • Hee-Kyun Oh (Dental Science Research Institute, Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonnam National University) ;
  • Hong-Ju Park (Dental Science Research Institute, Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonnam National University) ;
  • Ji-Yeon Jung (Dental Science Research Institute, Department of Oral Physiology, School of Dentistry, Chonnam National University)
  • Received : 2024.12.10
  • Accepted : 2024.12.16
  • Published : 2024.12.31

Abstract

Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic resource for the peripheral nervous system (PNS) and central nervous system (CNS) that is attributable to their capacity for neuronal differentiation. Human dental pulp stem cells (hDPSCs), which exhibit MSC-like traits, can differentiate into neuron-like cells and secrete critical neurotrophic factors; however, their therapeutic potential in peripheral nerve injury remains unexplored. This study investigated the regenerative effects of hDPSC transplantation following sciatic nerve injury (SNI) in rats. Transplantation of hDPSCs, STRO-1+ hDPSCs, or CD146+ hDPSCs after sciatic nerve transection in rats upregulated the levels of β3 tubulin, a marker of immature newborn neurons. Furthermore, the levels of glial cell-derived neurotrophic factor, insulin-like growth factor 2, and the neuroregenerative factor NeuroD1 were upregulated. Motor dysfunction in rats with SNI was restored, as demonstrated by significantly higher sciatic functional index scores compared with the sciatic nerve transection group without transplantation. Transplantation of hDPSCs into injured peripheral nerves results in the upregulation of neurotrophic factors, differentiation into immature neurons, and promotion of motor function recovery. This approach holds promise as a valuable therapeutic strategy for repairing injured peripheral sciatic nerves, potentially providing a solution for nerve damage in both the PNS and CNS.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF), funded by the Korean government (MSIP) (2019R1A5A2027521, 2021R1C1C2005005, 2022R1A2C100 8368, 2022R1A4A1029312).

References

  1. Hall S. Nerve repair: a neurobiologist's view. J Hand Surg Br 2001;26:129-36. doi: 10.1054/jhsb.2000.0497
  2. Nowacek A, Kosloski LM, Gendelman HE. Neurodegenerative disorders and nanoformulated drug development. Nanomedicine (Lond) 2009;4:541-55. doi: 10.2217/nnm.09.37
  3. Gupta AA, Anderson JR, Pappo AS, Spunt SL, Dasgupta R, Indelicato DJ, Hawkins DS. Patterns of chemotherapy-induced toxicities in younger children and adolescents with rhabdomyosarcoma: a report from the Children's Oncology Group Soft Tissue Sarcoma Committee. Cancer 2012;118:1130-7. doi: 10.1002/cncr.26358
  4. Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther 2019;10:68. doi: 10.1186/s13287-019-1165-5
  5. Yamanaka S. Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell 2020;27:523-531. doi: 10.1016/j.stem.2020.09.014
  6. Wichterle H, Przedborski S. What can pluripotent stem cells teach us about neurodegenerative diseases? Nat Neurosci 2010;13:800-4. doi: 10.1038/nn.2577
  7. Ross CA, Akimov SS. Human-induced pluripotent stem cells: potential for neurodegenerative diseases. Hum Mol Genet 2014;23(R1):R17-26. doi: 10.1093/hmg/ddu204
  8. Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, Shannon KM, Nauert GM, Perl DP, Godbold J, Freeman TB. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease. Ann Neurol 2003;54:403-14. doi: 10.1002/ana.10720
  9. Woloszyk A, Buschmann J, Waschkies C, Stadlinger B, Mitsiadis TA. Human dental pulp stem cells and gingival fibroblasts seeded into silk fibroin scaffolds have the same ability in attracting vessels. Front Physiol 2016;7:140. doi: 10.3389/fphys.2016.00140
  10. Tatullo M, Marrelli M, Shakesheff KM, White LJ. Dental pulp stem cells: function, isolation and applications in regenerative medicine. J Tissue Eng Regen Med 2015;9:1205-16. doi: 10.1002/term.1899
  11. Carnevale G, Pisciotta A, Riccio M, Bertoni L, De Biasi S, Gibellini L, Zordani A, Cavallini GM, La Sala GB, Bruzzesi G, Ferrari A, Cossarizza A, de Pol A. Human dental pulp stem cells expressing STRO-1, c-kit and CD34 markers in peripheral nerve regeneration. J Tissue Eng Regen Med 2018;12:e774-85. doi: 10.1002/term.2378
  12. Fernandez-Pernas P, Rodríguez-Lesende I, de la Fuente A, Mateos J, Fuentes I, De Toro J, Blanco FJ, Arufe MC. CD105+-mesenchymal stem cells migrate into osteoarthritis joint: an animal model. PLoS One 2017;12:e0188072. doi: 10.1371/journal.pone.0188072
  13. Matsui M, Kobayashi T, Tsutsui TW. CD146 positive human dental pulp stem cells promote regeneration of dentin/pulplike structures. Hum Cell 2018;31:127-38. doi: 10.1007/s13577-017-0198-2
  14. Leong WK, Henshall TL, Arthur A, Kremer KL, Lewis MD, Helps SC, Field J, Hamilton-Bruce MA, Warming S, Manavis J, Vink R, Gronthos S, Koblar SA. Human adult dental pulp stem cells enhance poststroke functional recovery through non-neural replacement mechanisms. Stem Cells Transl Med 2012;1:177-87. doi: 10.5966/sctm.2011-0039
  15. Koutsoudaki PN, Papastefanaki F, Stamatakis A, Kouroupi G, Xingi E, Stylianopoulou F, Matsas R. Neural stem/progenitor cells differentiate into oligodendrocytes, reduce inflammation, and ameliorate learning deficits after transplantation in a mouse model of traumatic brain injury. Glia 2016;64:763-79. doi: 10.1002/glia.22959
  16. Sasaki R, Aoki S, Yamato M, Uchiyama H, Wada K, Ogiuchi H, Okano T, Ando T. PLGA artificial nerve conduits with dental pulp cells promote facial nerve regeneration. J Tissue Eng Regen Med 2011;5:823-30. doi: 10.1002/term.387
  17. Ullah I, Park JM, Kang YH, Byun JH, Kim DG, Kim JH, Kang DH, Rho GJ, Park BW. Transplantation of human dental pulpderived stem cells or differentiated neuronal cells from human dental pulp-derived stem cells identically enhances regeneration of the injured peripheral nerve. Stem Cells Dev 2017;26:1247-57. doi: 10.1089/scd.2017.0068
  18. Ip CW, Isaias IU, Kusche-Tekin BB, Klein D, Groh J, O'Leary A, Knorr S, Higuchi T, Koprich JB, Brotchie JM, Toyka KV, Reif A, Volkmann J. Tor1a+/- mice develop dystonia-like movements via a striatal dopaminergic dysregulation triggered by peripheral nerve injury. Acta Neuropathol Commun 2016;4:108. doi: 10.1186/s40478-016-0375-7
  19. Marconi S, Castiglione G, Turano E, Bissolotti G, Angiari S, Farinazzo A, Constantin G, Bedogni G, Bedogni A, Bonetti B. Human adipose-derived mesenchymal stem cells systemically injected promote peripheral nerve regeneration in the mouse model of sciatic crush. Tissue Eng Part A 2012;18:1264-72. doi: 10.1089/ten.TEA.2011.0491
  20. Allodi I, Mecollari V, González-Pérez F, Eggers R, Hoyng S, Verhaagen J, Navarro X, Udina E. Schwann cells transduced with a lentiviral vector encoding Fgf-2 promote motor neuron regeneration following sciatic nerve injury. Glia 2014;62:1736-46. doi: 10.1002/glia.22712
  21. Sakai K, Yamamoto A, Matsubara K, Nakamura S, Naruse M, Yamagata M, Sakamoto K, Tauchi R, Wakao N, Imagama S, Hibi H, Kadomatsu K, Ishiguro N, Ueda M. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuroregenerative mechanisms. J Clin Invest 2012;122:80-90. doi: 10.1172/JCI59251
  22. Xu L, Zhou S, Feng GY, Zhang LP, Zhao DM, Sun Y, Liu Q, Huang F. Neural stem cells enhance nerve regeneration after sciatic nerve injury in rats. Mol Neurobiol 2012;46:265-74. doi: 10.1007/s12035-012-8292-7
  23. Pettersson J, McGrath A, Kalbermatten DF, Novikova LN, Wiberg M, Kingham PJ, Novikov LN. Muscle recovery after repair of short and long peripheral nerve gaps using fibrin conduits. Neurosci Lett 2011;500:41-6. doi: 10.1016/j.neulet.2011.06.
  24. Xu J, Wang W, Kapila Y, Lotz J, Kapila S. Multiple differentiation capacity of STRO-1+/CD146+ PDL mesenchymal progenitor cells. Stem Cells Dev 2009;18:487-96. doi: 10.1089/scd.2008.0113
  25. Yan Q, Yin Y, Li B. Use new PLGL-RGD-NGF nerve conduits for promoting peripheral nerve regeneration. Biomed Eng Online 2012;11:36. doi: 10.1186/1475-925X-11-36
  26. Xie H, Yang W, Chen J, Zhang J, Lu X, Zhao X, Huang K, Li H, Chang P, Wang Z, Wang L. A silk sericin/silicone nerve guidance conduit promotes regeneration of a transected sciatic nerve. Adv Healthc Mater 2015;4:2195-205. doi: 10.1002/adhm.201500355
  27. Coumans JV, Lin TT, Dai HN, MacArthur L, McAtee M, Nash C, Bregman BS. Axonal regeneration and functional recovery after complete spinal cord transection in rats by delayed treatment with transplants and neurotrophins. J Neurosci 2001;21:9334-44. doi: 10.1523/JNEUROSCI.21-23-09334.
  28. Perets N, Segal-Gavish H, Gothelf Y, Barzilay R, Barhum Y, Abramov N, Hertz S, Morozov D, London M, Offen D. Longterm beneficial effect of neurotrophic factors-secreting mesenchymal stem cells transplantation in the BTBR mouse model of autism. Behav Brain Res 2017;331:254-60. doi: 10.1016/j.bbr.2017.03.047
  29. Ziegler AN, Feng Q, Chidambaram S, Testai JM, Kumari E, Rothbard DE, Constancia M, Sandovici I, Cominski T, Pang K, Gao N, Wood TL, Levison SW. Insulin-like growth factor II: an essential adult stem cell niche constituent in brain and intestine. Stem Cell Reports 2019;12:816-30. doi: 10.1016/j.stemcr.2019.02.011
  30. Gao X, Deng L, Wang Y, Yin L, Yang C, Du J, Yuan Q. GDNF enhances therapeutic efficiency of neural stem cells-based therapy in chronic experimental allergic encephalomyelitis in rat. Stem Cells Int 2016;2016:1431349. doi: 10.1155/2016/
  31. Lai M, Pan M, Ge L, Liu J, Deng J, Wang X, Li L, Wen J, Tan D, Zhang H, Hu X, Fu L, Xu Y, Li Z, Qiu X, Chen G, Guo J. NeuroD1 overexpression in spinal neurons accelerates axonal regeneration after sciatic nerve injury. Exp Neurol 2020;327: 113215. doi: 10.1016/j.expneurol.2020.113215
  32. Hwang K, Jung K, Kim IS, Kim M, Han J, Lim J, Shin JE, Jang JH, Park KI. Glial cell line-derived neurotrophic factor-overexpressing human neural stem/progenitor cells enhance therapeutic efficiency in rat with traumatic spinal cord injury. Exp Neurobiol 2019;28:679-96. doi: 10.5607/en.2019.28.6.679
  33. Martín-Montañez E, Millon C, Boraldi F, Garcia-Guirado F, Pedraza C, Lara E, Santin LJ, Pavia J, Garcia-Fernandez M. IGF-II promotes neuroprotection and neuroplasticity recovery in a long-lasting model of oxidative damage induced by glucocorticoids. Redox Biol 2017;13:69-81. doi: 10.1016/j.redox.2017.05.012
  34. Fitzgerald GS, Chuchta TG, McNay EC. Insulin-like growth factor-2 is a promising candidate for the treatment and prevention of Alzheimer's disease. CNS Neurosci Ther 2023;29:1449-69. doi: 10.1111/cns.14160
  35. Molnár K, Nógrádi B, Kristóf R, Mészáros Á, Pajer K, Siklós L, Nógrádi A, Wilhelm I, Krizbai IA. Motoneuronal inflammasome activation triggers excessive neuroinflammation and impedes regeneration after sciatic nerve injury. J Neuroinflammation 2022;19:68. doi: 10.1186/s12974-022-02427-9
  36. Bingham JR, Kniery KR, Jorstad NL, Horkayne-Szakaly I, Hoffer ZS, Salgar SK. "Stem cell therapy to promote limb function recovery in peripheral nerve damage in a rat model" - Experimental research. Ann Med Surg (Lond) 2019;41:20-8. doi: 10. 1016/j.amsu.2019.03.009 https://doi.org/10.1016/j.amsu.2019.03.009
  37. Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 2015;17:11-22. doi: 10.1016/j.stem.2015.06.007
  38. Singh AK, McGuirk JP. Allogeneic stem cell transplantation: a historical and scientific overview. Cancer Res 2016;76:6445-51. doi: 10.1158/0008-5472.CAN-16-1311