Acknowledgement
This work was supported by a 2-Year Research Grant of Pusan National University.
References
- Braakman I, Bulleid NJ. Protein folding and modification in the mammalian endoplasmic reticulum. Annu Rev Biochem 2011;80:71-99. doi: 10.1146/annurev-biochem-062209-093836
- Araki K, Nagata K. Protein folding and quality control in the ER. Cold Spring Harb Perspect Biol 2012;4:a015438. doi: 10.1101/cshperspect.a015438
- Díaz-Villanueva JF, Díaz-Molina R, García-González V. Protein folding and mechanisms of proteostasis. Int J Mol Sci 2015;16:17193-230. doi: 10.3390/ijms160817193
- Singh R, Kaur N, Dhingra N, Kaur T. Protein misfolding, ER stress and chaperones: an approach to develop chaperone based therapeutics for Alzheimer's disease. Int J Neurosci 2023;133:714-34. doi: 10.1080/00207454.2021.1968859
- Stefani IC, Wright D, Polizzi KM, Kontoravdi C. The role of ER stress-induced apoptosis in neurodegeneration. Curr Alzheimer Res 2012;9:373-87. doi: 10.2174/156720512800107618
- Hetz C, Saxena S. ER stress and the unfolded protein response in neurodegeneration. Nat Rev Neurol 2017;13:477-91. doi: 10.1038/nrneurol.2017.99
- Hosoi T, Ozawa K. Endoplasmic reticulum stress in disease: mechanisms and therapeutic opportunities. Clin Sci (Lond) 2009;118:19-29. doi: 10.1042/CS20080680
- Chandan K, Gupta M, Sarwat M. Role of host and pathogen-derived microRNAs in immune regulation during infectious and inflammatory diseases. Front Immunol 2020;10:3081. doi: 10.3389/fimmu.2019.03081
- Fioranelli M, Roccia MG, Flavin D, Cota L. Regulation of inflammatory reaction in health and disease. Int J Mol Sci 2021;22:5277. doi: 10.3390/ijms22105277
- Di Conza G, Ho PC. ER stress responses: an emerging modulator for innate immunity. Cells 2020;9:695. doi: 10.3390/cells9030695
- Celli J, Tsolis RM. Bacteria, the endoplasmic reticulum and the unfolded protein response: friends or foes? Nat Rev Microbiol 2015;13:71-82. doi: 10.1038/nrmicro3393
- Hasturk H, Kantarci A, Van Dyke TE. Oral inflammatory diseases and systemic inflammation: role of the macrophage. Front Immunol 2012;3:118. doi: 10.3389/fimmu.2012.00118
- DiRienzo JM. Breaking the gingival epithelial barrier: role of the Aggregatibacter actinomycetemcomitans cytolethal distending toxin in oral infectious disease. Cells 2014;3:476-99. doi: 10.3390/cells3020476
- Fu Y, Maaβ S, Cavallo FM, de Jong A, Raangs E, Westra J, Buist G, Becher D, van Dijl JM. Differential virulence of Aggregatibacter actinomycetemcomitans serotypes explained by exoproteome heterogeneity. Microbiol Spectr 2023;11:e0329822. doi: 10.1128/spectrum.03298-22
- Zhang S, Zhao Y, Lalsiamthara J, Peng Y, Qi L, Deng S, Wang Q. Current research progress on Prevotella intermedia and associated diseases. Crit Rev Microbiol 2024. doi: 10.1080/1040841X.2024.2390594. [Epub ahead of print]
- Yang I, Claussen H, Arthur RA, Hertzberg VS, Geurs N, Corwin EJ, Dunlop AL. Subgingival microbiome in pregnancy and a potential relationship to early term birth. Front Cell Infect Microbiol 2022;12:873683. doi: 10.3389/fcimb.2022.873683
- Sampaio-Maia B, Caldas IM, Pereira ML, Pérez-Mongiovi D, Araujo R. The oral microbiome in health and its implication in oral and systemic diseases. Adv Appl Microbiol 2016;97:171-210. doi: 10.1016/bs.aambs.2016.08.002
- Vila T, Sultan AS, Montelongo-Jauregui D, Jabra-Rizk MA. Oral candidiasis: a disease of opportunity. J Fungi (Basel) 2020;6:15. doi: 10.3390/jof6010015