DOI QR코드

DOI QR Code

Research study on cognitive IoT platform for fog computing in industrial Internet of Things

산업용 사물인터넷에서 포그 컴퓨팅을 위한 인지 IoT 플랫폼 조사연구

  • Received : 2024.01.05
  • Accepted : 2024.02.09
  • Published : 2024.02.29

Abstract

This paper proposes an innovative cognitive IoT framework specifically designed for fog computing (FC) in the context of industrial Internet of Things (IIoT). The discourse in this paper is centered on the intricate design and functional architecture of the Cognitive IoT platform. A crucial feature of this platform is the integration of machine learning (ML) and artificial intelligence (AI), which enhances its operational flexibility and compatibility with a wide range of industrial applications. An exemplary application of this platform is highlighted through the Predictive Maintenance-as-a-Service (PdM-as-a-Service) model, which focuses on real-time monitoring of machine conditions. This model transcends traditional maintenance approaches by leveraging real-time data analytics for maintenance and management operations. Empirical results substantiate the platform's effectiveness within a fog computing milieu, thereby illustrating its transformative potential in the domain of industrial IoT applications. Furthermore, the paper delineates the inherent challenges and prospective research trajectories in the spheres of Cognitive IoT and Fog Computing within the ambit of Industrial Internet of Things (IIoT).

본 연구에서는 산업용 사물인터넷(IIoT)의 맥락에서 포그 컴퓨팅(Fog Computing, FC)를 위해 특별히 고안된 혁신적인 인지 사물인터넷(Cognitive IoT) 프레임워크를 제안한다. 본 논문에서는 인지 IoT 플랫폼의 복잡한 설계 및 기능적 아키텍처에 초점을 맞추고, 이 아키텍처는 서비스 제공, 인지 의사결정, 분산 모니터링 및 제어와 같은 핵심 구성 요소를 원활하게 통합하는 것을 제안한다. 이 플랫폼의 중요한 측면은 기계 학습(ML) 및 인공 지능(AI)을 통합하는 것으로, 다양한 산업 애플리케이션에서 운영의 유연성과 상호 운용성을 향상시켜 실시간 기계 상태 모니터링에 중점을 둔 예측 유지보수-서비스(Predictive Maintenance-as-a-Service, PdM-as-a-Service) 모델을 통해 제시된다. 이 모델은 실시간 데이터 분석을 활용하여 유지보수 및 관리 작업을 수행함으로써 전통적인 유지보수 접근법을 뛰어넘고, 실증적 결과는 포그 컴퓨팅 환경 내에서 플랫폼의 효과성을 입증하며, 산업용 IoT 애플리케이션 분야에서의 변혁적 잠재력을 보여 IIoT 플랫폼 개발에 기여 하는 연구이다.

Keywords

Acknowledgement

This paper was written with the support of the research grant from Baekseok University for the academic year 2023.

References

  1. Mineraud, J., Mazodier, C., & Aissaoui, O. "Fog computing in the industrial internet of things: a cyber-physical systems approach." Future Generation Computer Systems, Vol.99, pp.258-270, 2019. 
  2. Yu, M., Liang, J., Huang, D., & Xiao, F. "A hierarchical fog-cloud architecture for resource management and service orchestration in cognitive IoT." IEEE Transactions on Parallel and Distributed Systems, Vol.29, No.5, pp.1080-1093, 2017. 
  3. Ghaleb, A., Aref, S., & Kharel, P. "Cognitive internet of things (CIoT): concept, architecture and applications." IEEE Consumer Electronics Magazine, Vol.9, No.4, pp.52-65, 2020.  https://doi.org/10.1109/MCE.2019.2954051
  4. Jeong-Hoon Moon, Bo Feng, Jun-Hyuk Kwon, & Tae-Guk Kim. "Implementation of a smart umbrella stand based on the Internet of Things." Journal of Internet of Things Convergence, Vol.9, No.1, pp.57-64, 2023. 
  5. Lee, J., Lapira, E. O., & Kang, W. H. "Predictive maintenance of rotating machinery using machine learning and IoT data analytics: A review." Journal of Manufacturing Science and Engineering, Vol.141, No.8, 2019. 
  6. Zhang, J., Xu, B., He, W., & Li, Y. "An intelligent predictive maintenance system for rotating machinery using deep learning." IEEE Transactions on Industrial Electronics, Vol.66, No.7, pp.5477-5487, 2019. 
  7. V. Prabhu and D. Chaudhary, "Machine Learning enabled Condition Monitoring Models for Predictive Maintenance of Boilers," 2021 4th International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE), Noida, India, pp.426-430, 2021. 
  8. Cheng, Z., Wang, Y., & Li, T. "Application of machine learning in predictive maintenance of wind turbines." Energy Conversion and Management, Vol.199, 111928, 2019. 
  9. Yan, Z., Wang, Y., Xu, L., & Zhang, W. "A survey of fog computing service for industrial predictive maintenance." IEEE Access, Vol.8, pp.55326-55342, 2020. 
  10. Wu, F., Wu, Y., Chen, G., & Hu, B. "A cognitive IoT framework for predictive maintenance of equipment in smart factories." International Journal of Production Research, Vol.58, No.13-14, pp.4005-4021, 2020. 
  11. Rong, K., Hu, Y., Cheng, Y., & Zhang, Y. "Cognitive IoT based predictive maintenance for wind turbine systems." IEEE Transactions on Industrial Electronics, Vol.67, No.8, pp.6458-6466, 2019. 
  12. Wang, W., Yan, Z., & Xu, L. "A decentralized cooperative predictive maintenance approach for large-scale wind farms based on cognitive edge computing." IEEE Transactions on Industrial Informatics, Vol.16, No.7, pp.4553-4563, 2020. 
  13. Kim, S.-H., Lee, S.-H., & Choi, Y.-J. "A survey on cognitive IoT platform for fog computing industrial applications." IEEE Transactions on Industrial Informatics, Vol.19, No.2, pp.1211-1222, 2023. 
  14. Zhang, Y., Wang, Y., Zhang, X., & Zhang, Y. "A fog computing based cognitive IoT platform for smart manufacturing." IEEE Transactions on Industrial Informatics, Vol.18, No.1, pp.749-761, 2022. 
  15. Deng, S., Zhang, S., Li, Y., & Liu, H. "A cognitive IoT platform for fog computing in smart cities." IEEE Internet of Things Journal, Vol.8, No.1, pp.443-453, 2021. https://doi.org/10.1109/JIOT.2020.3006527