DOI QR코드

DOI QR Code

강자성-강유전성 복합체를 활용한 자기-기계-마찰전기 변환 발전소자

Magneto-Mechano-Triboelectric Generator Enabled by Ferromagnetic-Ferroelectric Composite

  • 임예슬 (부경대학교 재료공학전공) ;
  • 황건태 (부경대학교 재료공학전공)
  • Yeseul Lim (Department of Materials Science and Engineering, Pukyong National University) ;
  • Geon-Tae Hwang (Department of Materials Science and Engineering, Pukyong National University)
  • 투고 : 2023.10.28
  • 심사 : 2023.11.07
  • 발행 : 2024.01.01

초록

The Internet of Things (IoT) device is a key component for Industry 4.0, which is the network in homes, factories, buildings, and infrastructures to monitor and control the systems. To demonstrate the IoT network, batteries are widely utilized as power sources, and the batteries inevitably require repeated replacement due to their limited capacity. Magneto-mechano-electric (MME) generators are one of the candidate to develop self-powered IoT systems since MME generators can harvest electricity from stray alternating current (AC) magnetic fields arising from electric power cables. Herein, we report a magneto-mechano-triboelectric generator enabled by a ferromagnetic-ferroelectric composite. In the triboelectric nylon matrix, a ferromagnetic carbonyl iron powder (CIP) was introduced to induce magnetic force near the AC magnetic field for MME harvesting. Additionally, a ferroelectric ceramic powder was also added to the MME composite material to enhance the charge-trapping capability during triboelectric harvesting. The final ferromagnetic-ferroelectric composite-based MME triboelectric harvester can generate an open-circuit voltage and a short-circuit current of 110 V and 8 μA, respectively, which were enough to turn on a light emitting diode (LED) and charge a capacitor. These results verify the feasibility of the MME triboelectric generator for not only harvesting electricity from an AC magnetic field but also for various self-powered IoT applications.

키워드

과제정보

이 논문은 부경대학교 자율창의학술연구비(2022년)에 의하여 연구되었음.

참고문헌

  1. J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, Future Gener. Comput. Syst., 29, 1645 (2013). doi: https://doi.org/10.1016/j.future.2013.01.010
  2. R. Haight, W. Haensch, and D. Friedman, Science, 353, 124 (2016). doi: https://doi.org/10.1126/science.aag0476
  3. D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, Ad Hoc Networks, 10, 1497 (2012). doi: https://doi.org/10.1016/j.adhoc.2012.02.016
  4. M. S. Kwak, K. W. Lim, H. Y. Lee, M. Peddigari, J. Jang, C. K. Jeong, J. Ryu, W. H. Yoon, S. N. Yi, and G. T. Hwang, Nanoscale, 13, 8418 (2021). doi: https://doi.org/10.1039/D1NR01336J
  5. G. T. Hwang, V. Annapureddy, J. H. Han, D. J. Joe, C. Baek, D. Y. Park, D. H. Kim, J. H. Park, C. K. Jeong, K. I. Park, J. J. Choi, D. K. Kim, J. Ryu, and K. J. Lee, Adv. Energy Mater., 6, 1600237 (2016). doi: https://doi.org/10.1002/aenm.201600237
  6. A. Harb, Renewable Energy, 36, 2641 (2011). doi: https://doi.org/10.1016/j.renene.2010.06.014
  7. S. Priya and D. J. Inman, Energy Harvesting Technologies (Springer, New York, 2009) p. 4. doi: https://doi.org/10.1007/978-0-387-76464-1
  8. H. Song, D. R. Patil, W. H. Yoon, K. H. Kim, C. Choi, J. H. Kim, G. T. Hwang, D. Y. Jeong, and J. Ryu, Energy Environ. Sci., 13, 4238 (2020). doi: https://doi.org/10.1039/D0EE01574A
  9. J. Ryu, J. E. Kang, Y. Zhou, S. Y. Choi, W. H. Yoon, D. S. Park, J. J. Choi, B. D. Hahn, C. W. Ahn, J. W. Kim, Y. D. Kim, S. Priya, S. Y. Lee, S. Jeong, and D. Y. Jeong, Energy Environ. Sci., 8, 2402 (2015). doi: https://doi.org/10.1039/C5EE00414D
  10. H. Kim, H. Kim, and C. K. Jeong, J. Korean Inst. Electr. Electron. Mater. Eng., 36, 292 (2023). doi: https://doi.org/10.4313/JKEM.2023.36.3.13
  11. C. M. Baek, M. W. Kim, J. W. Lee, H. A. Kim, J. Y. Jung, J. H. Yoon, H. I. Kim, Y. J. Park, G. H. Kim, S. H. Kim, S. H. Kim, J. M. Kim, H. S. Lee, J. W. Jang, M. G. Jeong, J. H. Choi, S. Y. Ha, S. Lee, H. S. Choi, and J. Ryu, J. Korean Inst. Electr. Electron. Mater. Eng., 35, 639 (2022). doi: https://doi.org/10.4313/JKEM.2022.35.6.15
  12. W. Seung, H. J. Yoon, T. Y. Kim, H. Ryu, J. Kim, J. H. Lee, J. H. Lee, S. Kim, Y. K. Park, Y. J. Park, and S. W. Kim, Adv. Energy Mater., 7, 1600988 (2016). doi: https://doi.org/10.1002/aenm.201600988
  13. K. W. Lim, M. Peddigari, C. H. Park, H. Y. Lee, Y. Min, J. W. Kim, C. W. Ahn, J. J. Choi, B. D. Hahn, J. H. Choi, D. S. Park, J. K. Hong, J. T. Yeom, W. H. Yoon, J. Ryu, S. N. Yi, and G. T. Hwang, Energy Environ. Sci., 12, 666 (2019). doi: https://doi.org/10.1039/C8EE03008A
  14. A. Chen, C. Zhang, G. Zhu, and Z. L. Wang, Adv. Sci., 7, 2000186 (2020). doi: https://doi.org/10.1002/advs.202000186
  15. Y. S. Choi and S. Kar-Narayan, EcoMat, 2, e12063 (2020). doi: https://doi.org/10.1002/eom2.12063
  16. R. Zhang and H. Olin, EcoMat, 2, e12062 (2020). doi: https://doi.org/10.1002/eom2.12062
  17. J. E. Japka, JOM, 40, 18 (1988). doi: https://doi.org/10.1007/BF03258115
  18. P. Malecki, M. Krolewicz, J. Krzak, J. Kaleta, and J. Piglowski, J. Intell. Mater. Syst. Struct., 26, 1899 (2015). doi: https://doi.org/10.1177/1045389X15581522
  19. L. Chang, Y. Zhang, Y. Dong, Q. Li, A. He, C. Chang, and X. Wang, SN Appl. Sci., 1, 902 (2019). doi: https://doi.org/10.1007/s42452-019-0950-1
  20. N. L. Burhannuddin, N. A. Nordin, S. A. Mazlan, S.A.A. Aziz, N. Kuwano, S.K.M. Jamari, and Ubaidillah, Sci. Rep., 11, 868 (2021). doi: https://doi.org/10.1038/s41598-020-80539-z
  21. A. Wu, P. M. Vilarinho, I.M.M. Salvado, J. L. Baptista, C. M. de Jesus, and M. F. da Silva, J. Eur. Ceram. Soc., 19, 1403 (1999). doi: https://doi.org/10.1016/S0955-2219(98)00445-2
  22. U. Sundar, S. Banerjee, and K. A. Cook-Chennault, Acad. J. Polym. Sci., 1, 555574 (2018). doi: https://doi.org/10.19080/AJOP.2018.01.555574
  23. J. Jachowicz, M. Garcia, and G. W. Surel, Text. Res. J., 57, 543 (1987). doi: https://doi.org/10.1177/004051758705700910
  24. F. R. Fan, Z. Q. Tian, and Z. L. Wang, Nano Energy, 1, 328 (2012). doi: https://doi.org/10.1016/j.nanoen.2012.01.004
  25. Z. L. Wang, Faraday Discuss., 176, 447 (2014). doi: https://doi.org/10.1039/C4FD00159A
  26. S. Wang, L. Lin, and Z. L. Wang, Nano Lett., 12, 6339 (2012). doi: https://doi.org/10.1021/nl303573d
  27. G. Zhu, C. Pan, W. Guo, C. Y. Chen, Y. Zhou, R. Yu, and Z. L. Wang, Nano Lett., 12, 4960 (2012). doi: https://doi.org/10.1021/nl302560k