DOI QR코드

DOI QR Code

Ge2Sb2Te5/TiN/W-Doped Ge2Sb2Te5 셀 구조의 다중준위 메모리 특성 평가

Evaluation of Multi-Level Memory Characteristics in Ge2Sb2Te5/TiN/W-Doped Ge2Sb2Te5 Cell Structure

  • 조준혁 (전남대학교 화학공학부) ;
  • 서준영 (전남대학교 화학공학부) ;
  • 이주희 (전남대학교 화학공학부) ;
  • 박주영 (전남대학교 에너지자원공학과) ;
  • 이현용 (전남대학교 화학공학부)
  • Jun-Hyeok Jo (School of Chemical Engineering, Chonnam National University) ;
  • Jun-Young Seo (School of Chemical Engineering, Chonnam National University) ;
  • Ju-Hee Lee (School of Chemical Engineering, Chonnam National University) ;
  • Ju-Yeong Park (School of Energy Resource Engineering, Chonnam National University) ;
  • Hyun-Yong Lee (School of Chemical Engineering, Chonnam National University)
  • 투고 : 2023.10.10
  • 심사 : 2023.11.27
  • 발행 : 2024.01.01

초록

To evaluate the possibility as a multi-level memory medium for the Ge2Sb2Te5/TiN/W-doped Ge2Sb2Te5 cell structure, the crystallization rate and stabilization characteristics according to voltage (V)- and current (I)- pulse sweeping were investigated. In the cell structures prepared by a magnetron sputtering system on a p-type Si (100) substrate, the Ge2Sb2Te5 and W-doped Ge2Sb2Te5 thin films were separated by a barrier metal, TiN, and the individual thicknesses were varied, but the total thickness was fixed at 200 nm. All cell structures exhibited relatively stable multi-level states of high-middle-low resistance (HR-MR-LR), which guarantee the reliability of the multilevel phase-change random access memory (PRAM). The amorphousto-multilevel crystallization rate was evaluated from a graph of resistance (R) vs. pulse duration (T) obtained by the nanoscaled pulse sweeping at a fixed applied voltage (12 V). For all structures, the phase-change rates of HR→MR and MR→LR were estimated to be approximately t<20 ns and t<40 ns, respectively, and the states were relatively stable. We believe that the doublestack structure of an appropriate Ge-Sb-Te film separated by barrier metal (TiN) can be optimized for high-speed and stable multilevel PRAM.

키워드

과제정보

이 논문은 전남대학교 연구비 지원에 의하여 연구되었음(과제번호: 2022-0128).

참고문헌

  1. R. Bez and A. Pirovano, Mater. Sci. Semicond. Process., 7, 349 (2004). doi: https://doi.org/10.1016/j.mssp.2004.09.127
  2. K. Kim and Y. J. Song, Microelectron. Reliab., 43, 385 (2003). doi: https://doi.org/10.1016/S0026-2714(02)00285-8
  3. S. Tehrani, J. M. Slaughter, M. Deherrera, B. N. Engel, N. D. Rizzo, J. Slater, M. Durlam, R. W. Dave, J. Janesky, B. Butcher, K. Smith, and G. Grynkewich, Proc. IEEE, 91, 703 (2003). doi: https://doi.org/10.1109/JPROC.2003.811804
  4. Y. Ren, R. Sun, S.H.Y. Chen, C. Du, S. T. Han, and Y. Zhou, Phys. Status Solidi RRL, 15, 2000394 (2021). doi: https://doi.org/10.1002/pssr.202000394
  5. P. Guo, A. M. Sarangan, and I. Agha, Appl. Sci., 9, 530 (2019). doi: https://doi.org/10.3390/app9030530
  6. K. H. Song, S. W. Kim, J. H. Seo, and H. Y. Lee, J. Appl. Phys., 104, 103516 (2008). doi: https://doi.org/10.1063/1.3026720
  7. Y. Xue, S. Song, S. Yan, T. Guo, Z. Song, and S. Feng, Scripta Mater., 157, 152 (2018). doi: https://doi.org/10.1016/j.scriptamat.2018.08.009
  8. S. R. Ovshinsky, Phys. Rev. Lett., 21, 1450 (1968). doi: https://doi.org/10.1103/PhysRevLett.21.1450
  9. L. Waldecker, T. A. Miller, M. Rude, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, Nat. Mater., 14, 991 (2015). doi: https://doi.org/10.1038/nmat4359
  10. K. H. Song, S. C. Baek, and H. Y. Lee, J. Korean Phys. Soc., 61, 10 (2012). doi: https://doi.org/10.3938/jkps.61.10
  11. C. J. Park, J. B. Yeo, H. Kong, and H. Y. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 133 (2017). doi: https://doi.org/10.4313/jkem.2017.30.3.133
  12. S. W. Kim, K. H. Song, and H. Y. Lee, J. Korean Inst. Electr.Electron. Mater. Eng., 21, 629 (2008). doi: https://doi.org/10.4313/JKEM.2008.21.7.629
  13. W. Y. Oh and H. Y. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 35, 44 (2022). doi: https://doi.org/10.4313/JKEM.2022.35.1.7
  14. S. Tyson, G. Wicker, T. Lowrey, S. Hudgens, and K. Hunt, Proc. 2000 IEEE Aerospace Conference. Proceedings (Cat. No. 00TH8484) (IEEE, Big Sky, USA, 2000) p. 385. doi: https://doi.org/10.1109/aero.2000.878512