DOI QR코드

DOI QR Code

플라즈몬 금속 산화물 나노입자를 활용한 차세대 전기변색 소자 개발 동향

Recent Progress of Developing Next-Generation Electrochromic Windows from Plasmonic Metal Oxide Nanocrystals

  • 나장한 (서울과학기술대학교 화공생명공학과) ;
  • 김성빈 (서울과학기술대학교 화공생명공학과) ;
  • 허성연 (서울과학기술대학교 화공생명공학과)
  • Janghan Na (Department of Chemical and Biomolecular Engineering, Seoul National University of Science &Technology) ;
  • Sungbin Kim (Department of Chemical and Biomolecular Engineering, Seoul National University of Science &Technology) ;
  • Sungyeon Heo (Department of Chemical and Biomolecular Engineering, Seoul National University of Science &Technology)
  • 투고 : 2023.11.01
  • 심사 : 2023.11.10
  • 발행 : 2024.01.01

초록

Direct use of sunlight through the glass windows is an efficient way to reduce the energy consumption related to the heating, cooling, and lighting. Introduction of near-infrared modulating properties through colloidal doped metal oxide nanocrystals into the classical electrochromic materials accelerates the development of next-generation electrochromic devices. There has been a steady enhancement in the performance of electrochromic devices, necessitating a review of the recent progress in next-generation electrochromic devices employing doped metal oxide nanocrystals. This review provides an overview of the current developments in next-generation electrochromic smart windows utilizing colloidal doped metal oxide nanocrystals, with a focus on the key factors for achieving these advanced windows. Colloidal doped metal oxide nanocrystals are a crucial component in realizing and bringing to market the next generation of electrochromic windows, though further research and development are still required in this regard.

키워드

과제정보

본 연구는 2023년도 과학기술정보통신부의 재원으로 한국연구재단의 지원(No.2022R1F1A1064253)을 받아 수행되었습니다.

참고문헌

  1. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, Chem. Rev., 110, 6595 (2010). doi: https://doi.org/10.1021/cr900356p
  2. S. K. Deb, Philos. Mag. A, 27, 801 (1973). doi: https://doi.org/10.1080/14786437308227562
  3. H. Shin, S. Seo, C, Park, J. Na, M. Han, and E. Kim, Energy Environ. Sci., 9, 117 (2016). doi: https://doi.org/10.1039/C5EE03160E
  4. S. H. Lee, R. Deshpande, P. A. Parilla, K. M. Jones, B. To, A. H. Mahan, and A. C. Dillon, Adv. Mater., 18, 763 (2006). doi: https://doi.org/10.1002/adma.200501953
  5. S. H. Lee, H. M. Cheong, C. E. Tracy, A. Mascarenhas, J. R. Pitts, G. Jorgensen, and S. K. Deb, Appl. Phys. Lett., 76, 3908 (2000). doi: https://doi.org/10.1063/1.126817
  6. H. Kim, J. Ham, and H. Cho, Case Stud. Therm. Eng., 35, 102151 (2022). doi: https://doi.org/10.1016/j.csite.2022.102151
  7. S. K. Deb, Sol. Energy Mater. Sol. Cells, 92, 245 (2008). doi: https://doi.org/10.1016/j.solmat.2007.01.026
  8. G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, Nano Lett., 11, 4415 (2011). doi: https://doi.org/10.1021/nl202597n
  9. J. Fortunato, B. Z. Zydlewski, M. Lei, N. P. Holzapfel, M. Chagnot, J. B. Mitchell, H. C. Lu, D. E. Jiang, D. J. Milliron, and V. Augustyn, ACS Photonics, 10, 3409 (2023). doi: https://doi.org/10.1021/acsphotonics.3c00921
  10. T. E. Williams, D. Ushizima, C. Zhu, A. Anders, D. J. Milliron, and B. A. Helms, Chem. Commun., 53, 4853 (2017). doi: https://doi.org/10.1039/C6CC10183F
  11. C. J. Dahlman, A. Agrawal, C. M. Staller, J. Adair, and D. J. Milliron, Chem. Mater., 31, 502 (2019). doi: https://doi.org/10.1021/acs.chemmater.8b04519
  12. S. Heo, A. Agrawal, and D. J. Milliron, Adv. Funct. Mater., 29, 1904555 (2019). doi: https://doi.org/10.1002/adfm.201904555
  13. G. Li, S. Zhang, C. Guo, and S. Liu, Nanoscale, 8, 9861 (2016). doi: https://doi.org/10.1039/C5NR09147K
  14. Y. Wang, E. L. Runnerstrom, and D. J. Milliron, Annu. Rev. Chem. Biomol. Eng., 7, 283 (2016). doi: https://doi.org/10.1146/annurev-chembioeng-080615-034647
  15. G. Cai, J. Wang, and P. S. Lee, Acc. Chem. Res., 49, 1469 (2016). doi: https://doi.org/10.1021/acs.accounts.6b00183
  16. G. Atak, I. B. Pehlivan, J. Montero, C. G. Granqvist, and G. A. Niklasson, Electrochim. Acta, 367, 137233 (2021). doi: https://doi.org/10.1016/j.electacta.2020.137233
  17. A. C. Dillon, A. H. Mahan, R. Deshpande, P. A. Parilla, K. M. Jones, and S. H. Lee, Thin Solid Films, 516, 794 (2008). doi: https://doi.org/10.1016/j.tsf.2007.06.177
  18. M.R.J. Scherer and U. Steiner, Nano Lett., 13, 3005 (2013). doi: https://doi.org/10.1021/nl303833h
  19. B. Tandon, H. C. Lu, and D. J. Milliron, J. Phys. Chem. C, 126, 9228 (2022). doi: https://doi.org/10.1021/acs.jpcc.2c02155
  20. R. Buonsanti, T. E. Pick, N. Krins, T. J. Richardson, B. A. Helms, and D. J. Milliron, Nano Lett., 12, 3872 (2012). doi: https://doi.org/10.1021/nl302206s
  21. E. L. Runnerstrom, A. Llordes, S. D. Lounis, and D. J. Milliron, Chem. Commun., 50, 10555 (2014). doi: https://doi.org/10.1039/C4CC03109A
  22. V. Augustyn, P. Simon, and B. Dunn, Energy Environ. Sci., 7, 1597 (2014). doi: https://doi.org/10.1039/c3ee44164d
  23. A. Llordes, G. Garcia, J. Gazquez, and D. J. Milliron, Nature, 500, 323 (2013). doi: https://doi.org/10.1038/nature12398
  24. J. Kim, G. K. Ong, Y. Wang, G. LeBlanc, T. E. Williams, T. M. Mattox, B. A. Helms, and D. J. Milliron, Nano Lett., 15, 5574 (2015). doi: https://doi.org/10.1021/acs.nanolett.5b02197
  25. S. Heo, J. Kim, G. K. Ong, and D. J. Milliron, Nano Lett., 17, 5756 (2017). doi: https://doi.org/10.1021/acs.nanolett.7b02730
  26. C. J. Dahlman, Y. Tan, M. A. Marcus, and D. J. Milliron, J. Am. Chem. Soc., 137, 9160 (2015). doi: https://doi.org/10.1021/jacs.5b04933
  27. H. C. Lu, N. Katyal, G. Henkelman, and D. J. Milliron, J. Am. Chem. Soc., 143, 15745 (2021). doi: https://doi.org/10.1021/jacs.1c06901
  28. S. Heo, C. J. Dahlman, C. M. Staller, T. Jiang, A. Dolocan, B. A. Korgel, and D. J. Milliron, Nano Lett., 20, 2072 (2020). doi: https://doi.org/10.1021/acs.nanolett.0c00052
  29. S. Heo, S. H. Cho, C. J. Dahlman, A. Agrawal, and D. J. Milliron, ACS Energy Lett., 5, 2662 (2020). doi: https://doi.org/10.1021/acsenergylett.0c01236
  30. Y. Wang, J. Kim, Z. Gao, O. Zandi, S. Heo, P. Banerjee, and D. J. Milliron, Chem. Mater., 28, 7198 (2016). doi: https://doi.org/10.1021/acs.chemmater.6b03793
  31. A. Llordes, Y. Wang, A. Fernandez-Martinez, P. Xiao, T. Lee, A. Poulain, O. Zandi, C. A. Saez Cabezas, G. Henkelman, and D. J. Milliron, Nat. Mater., 15, 1267 (2016). doi: https://doi.org/10.1038/nmat4734