DOI QR코드

DOI QR Code

Research on the Strategic Use of AI and Big Data in the Food Industry to Drive Consumer Engagement and Market Growth

  • Taek Yong YOO (Dept. of Food service and Culinary Arts, Bucheon University) ;
  • Seong-Soo CHA (Dept. of Food Science and Service, College of Bio-Convergence, Eulji University)
  • Received : 2024.01.24
  • Accepted : 2024.02.15
  • Published : 2024.02.28

Abstract

Purpose: The research aims to address the intricacies of AI and Big Data application within the food industry. This study explores the strategic implementation of AI and Big Data in the food industry. The study seeks to understand how these technologies can be employed to bolster consumer engagement and contribute to market expansion, while considering ethical implications. Research Method: This research employs a comprehensive approach, analyzing current trends, case studies, and existing academic literature. It focuses on the application of AI and Big Data in areas such as supply chain management, consumer behavior analysis, and personalized marketing strategies. Results: The study finds that AI and Big Data significantly enhance market analytics, consumer personalization, and market trend prediction. It highlights the potential of these technologies in creating more efficient supply chains, improving consumer satisfaction through personalization, and providing valuable market insights. Conclusion and Implications: The paper offers actionable insights and recommendations for the effective implementation of AI and Big Data strategies in the food industry. It emphasizes the need for ethical considerations, particularly in data privacy and the transparency of AI algorithms. The study also explores future trends, suggesting that AI and Big Data will continue to revolutionize the industry, emphasizing sustainability, efficiency, and consumer-centric practices.

Keywords

References

  1. Andreotta, A. J., Kirkham, N., & Rizzi, M. (2022). AI, big data, and the future of consent. Ai & Society, 37(4), 1715-1728. https://doi.org/10.1007/s00146-021-01262-5
  2. Cha, S. S. (2023). A Study of AI Impact on the Food Industry. The Korean Journal of Food & Health Convergence, 9(4), 19-23.
  3. Duarte, V., Zuniga-Jara, S., & Contreras, S. (2022). Machine Learning and Marketing: A Systematic Literature Review. IEEE Access.
  4. Haenlein, M., & Kaplan, A. (2019). A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. California management review, 61(4), 5-14. https://doi.org/10.1177/0008125619864925
  5. Huang, M. H., & Rust, R. T. (2021). A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science, 49, 30-50. https://doi.org/10.1007/s11747-020-00749-9
  6. Kamal, M., & Himel, A. S. (2023). Redefining Modern Marketing: An Analysis of AI and NLP's Influence on Consumer Engagement, Strategy, and Beyond. Eigenpub Review of Science and Technology, 7(1), 203-223.
  7. Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who's the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business horizons, 62(1), 15-25. https://doi.org/10.1016/j.bushor.2018.08.004
  8. Li, X., Liu, H., Wang, W., Zheng, Y., Lv, H., & Lv, Z. (2022). Big data analysis of the internet of things in the digital twins of smart city based on deep learning. Future Generation Computer Systems, 128, 167-177. https://doi.org/10.1016/j.future.2021.10.006
  9. Liu, F., Li, M., Wang, Q., Yan, J., Han, S., Ma, C., ... & McClements, D. J. (2023). Future foods: Alternative proteins, food architecture, sustainable packaging, and precision nutrition. Critical Reviews in Food Science and Nutrition, 63(23), 6423-6444. https://doi.org/10.1080/10408398.2022.2033683
  10. Murdoch, B. (2021). Privacy and artificial intelligence: challenges for protecting health information in a new era. BMC Medical Ethics, 22(1), 1-5. https://doi.org/10.1186/s12910-021-00687-3
  11. Patricio, D. I., & Rieder, R. (2018). Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Computers and electronics in agriculture, 153, 69-81. https://doi.org/10.1016/j.compag.2018.08.001
  12. Rai, A. (2020). Explainable AI: From black box to glass box. Journal of the Academy of Marketing Science, 48, 137-141. https://doi.org/10.1007/s11747-019-00710-5
  13. Robert, R., Kentish-Barnes, N., Boyer, A., Laurent, A., Azoulay, E., & Reignier, J. (2020). Ethical dilemmas due to the Covid-19 pandemic. Annals of intensive care, 10, 1-9. https://doi.org/10.1186/s13613-019-0618-4
  14. Smaros, J., Lehtonen, J. M., Appelqvist, P., & Holmstrom, J. (2003). The impact of increasing demand visibility on production and inventory control efficiency. International journal of physical distribution & logistics management, 33(4), 336-354. https://doi.org/10.1108/09600030310478801
  15. Stone, M., Aravopoulou, E., Ekinci, Y., Evans, G., Hobbs, M., Labib, A., ... & Machtynger, L. (2020). Artificial intelligence (AI) in strategic marketing decision-making: a research agenda. The Bottom Line, 33(2), 183-200. https://doi.org/10.1108/BL-03-2020-0022
  16. Yoo, T. Y., Cha, S. S. (2023). Foodservice Trend Predictions and Implications in 2024. The Korean Journal of Food & Health Convergence, 9(6), 21-26.
  17. Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2021). Understanding deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3), 107-115