DOI QR코드

DOI QR Code

Quantum Coherent Dissociation in a Hybrid Atom-light System with Photon Loss

  • Xiaoyang Yuan (School of Science, Zhejiang University of Science and Technology) ;
  • Jialu Yin (School of Science, Zhejiang University of Science and Technology) ;
  • Jiahao Xu (School of Science, Zhejiang University of Science and Technology) ;
  • Yixiao Huang (School of Science, Zhejiang University of Science and Technology) ;
  • Zhengda Hu (School of Science, Jiangnan University)
  • Received : 2023.11.10
  • Accepted : 2024.01.20
  • Published : 2024.02.25

Abstract

We investigate the effect of photon loss on pair production in a hybrid atom-light system. The loss of light field not only affects the generation of photons, but also prevents the generation of atomic collective excitation, although the atoms are not influenced directly. We propose an unbalanced homodyne detection of the number of atomic collective excitation that overcomes the challenge caused by counting uncertainty in practical measurement. In discussion, we show that the intermode correlations and the number correlation is closely related to the initial input state, while the quadrature correlations are independent of the initial state and always exhibit opposite intermode correlations even in the presence of loss.

Keywords

Acknowledgement

The Natural Science Foundation of Zhejiang Province (Grant No.LY22A050002).

References

  1. Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, "Observation of nonlocal interference in separated photon channels," Phys. Rev. Lett. 65, 321 (1990).
  2. T. Mukaiyama, J. R. Abo-Shaeer, K. Xu, J. K. Chin, and W. Ketterle, "Dissociation and decay of ultracold sodium molecules," Phys. Rev. Lett. 92, 180402 (2004).
  3. S. Durr, T. Volz, and G. Rempe, "Dissociation of ultracold molecules with Feshbach resonances," Phys. Rev. A 70, 031601 (2004).
  4. M. Greiner, C. A. Regal, J. T. Stewart, and D. S. Jin, "Probing pair-correlated fermionic atoms through correlations in atom shot noise," Phys. Rev. Lett. 94, 110401 (2005).
  5. S. T. Thompson, E. Hodby, and C. E. Wieman, "Spontaneous dissociation of 85Rb Feshbach molecules," Phys. Rev. Lett. 94, 020401 (2005).
  6. E. S. Fry, T. Walther, and S. Li, "Proposal for a loophole-free test of the Bell inequalities," Phys. Rev. A 52, 4381 (1995).
  7. T. Opatrny and G. Kurizki, "Matter-wave entanglement and teleportation by molecular dissociation and collisions," Phys. Rev. Lett. 86, 3180 (2001).
  8. K. V. Kheruntsyan, M. K. Olsen, and P. D. Drummond, "Einstein-Podolsky-Rosen correlations via dissociation of a molecular Bose-Einstein condensate," Phys. Rev. Lett. 95, 150405 (2005).
  9. B. Zhao, Z. B. Chen, J. W. Pan, J. Schmiedmayer, A. Recati, G. E.Astrakharchik, and T. Calarco, "High-fidelity entangle-ment via molecular dissociation in integrated atom optics," Phys. Rev. A 75, 042312 (2007).
  10. C. Gneiting and K. Hornberger, "Bell test for the free motion of material particles," Phys. Rev. Lett. 101, 260503 (2008).
  11. N. Bar-Gill, C. Gross, I. Mazets, M. Oberthaler, and G. Kurizki, "Einstein-Podolsky-Rosen correlations of ultracold atomic gases," Phys. Rev. Lett. 106, 120404 (2011).
  12. A. Vardi and M. G. Moore, "Directional 'Superradiant' Collisions: Bosonic amplification of atom pairs emitted from an elongated Bose-Einstein condensate," Phys. Rev. Lett. 89, 090403 (2002).
  13. K. V. Kheruntsyan and P. D. Drummond, "Quantum correlated twin atomic beams via photodissociation of a molecular Bose-Einstein condensate," Phys. Rev. A 66, 031602 (2002).
  14. K. V. Kheruntsyan, "Matter-wave amplification and phase conjugation via stimulated dissociation of a molecular Bose-Einstein condensate," Phys. Rev. A 71, 053609 (2005).
  15. C. D. Hamley, C. S. Gerving, T. M. Hoang, E. M. Bookjans, and M. S. Chapman, "Spin-nematic squeezed vacuum in a quantum gas," Nat. Phys. 8, 305-308 (2012). https://doi.org/10.1038/nphys2245
  16. T. M. Hoang, C. S. Gerving, B. J. Land, M. Anquez, C. D. Hamley, and M. S. Chapman, "Dynamic stabilization of a quantum many-body spin system," Phys. Rev. Lett. 111, 090403 (2013).
  17. Y. X. Huang, H. N. Xiong, Z. Sun, and X. Wang, "Generation and storage of spin-nematic squeezing in a spinor Bose-Einstein condensate," Phys. Rev. A 92, 023622 (2015).
  18. D. M. Stamper-Kurn and M. Ueda, "Spinor Bose gases: Symmetries, magnetism, and quantum dynamics," Rev. Mod. Phys. 85, 1191 (2013).
  19. T.-L. Ho, "Spinor Bose condensates in optical traps," Phys. Rev. Lett. 81, 742 (1998).
  20. T. Ohmi and K. Machida, "Bose-Einstein condensation with internal degrees of freedom in alkali atom gases," J. Phys. Soc. Jpn. 67, 1822-1825 (1998). https://doi.org/10.1143/JPSJ.67.1822
  21. H. J. Miesner, D. M. Stamper-Kurn, J. Stenger, S. Inouye, A. P. Chikkatur, and W. Ketterle, "Observation of metastable states in spinor Bose-Einstein condensates," Phys. Rev. Lett. 82, 2228 (1999).
  22. M. S. Chang, C. D. Hamley, M. D. Barrett, J. A. Sauer, K. M. Fortier, W. Zhang, L. You, and M. S. Chapman, "Observation of spinor dynamics in optically trapped 87Rb Bose-Einstein condensates," Phys. Rev. Lett. 92, 140403 (2004).
  23. H. Schmaljohann, M. Erhard, J. Kronj ̈ager, M. Kottke, S. Van Staa, L. Cacciapuoti, J. J. Arlt, and K. Sengstock, "Dynamics of F = 2 spinor Bose-Einstein condensates," Phys. Rev. Lett. 92, 040402 (2004).
  24. C. K. Law, H. Pu, and N. P. Bigelow, "Quantum spins mixing in spinor Bose-Einstein condensates," Phys. Rev. Lett. 81, 5257 (1998).
  25. Y. X. Huang, Z. Sun, and X. Wang, "Atom-number fluctuation and macroscopic quantum entanglement in dipole spinor condensates," Phys. Rev. A. 89, 043601 (2014).
  26. S. Yi, L. You, and H. Pu, "Quantum phases of dipolar spinor condensates," Phys. Rev. Lett. 93, 040403 (2004).
  27. S. Yi and H. Pu, "Magnetization, squeezing, and entanglement in dipolar spin-1 condensates," Phys. Rev. A 73, 023602 (2006).
  28. Y. Huang, Y. Zhang, R. Lu, X. Wang, and S. Yi, "Macroscopic quantum coherence in spinor condensates confined in an anisotropic potential," Phys. Rev. A 86, 043625 (2012).
  29. P. D. Drummond, K. V. Kheruntsyan, and H. He, "Coherent molecular solitons in Bose-Einstein condensates," Phys. Rev. Lett. 81, 3055 (1998).
  30. J. Javanainen and M. Mackie, "Coherent photoassociation of a Bose-Einstein condensate," Phys. Rev. A 59, R3186 (1999).
  31. A. Vardi, V. A. Yurovsky, and J. R. Anglin, "Quantum effects on the dynamics of a two-mode atom-molecule Bose-Einstein condensate," Phys. Rev. A. 64, 063611 (2001).
  32. M. W. Jack and H. Pu, "Dissociation dynamics of a Bose-Einstein condensate of molecules," Phys. Rev. A. 72, 063625 (2005).
  33. U. V. Poulsen and K. Molmer, "Quantum states of Bose-Einstein condensates formed by molecular dissociation," Phys. Rev. A 63, 023604 (2001).
  34. C. Khripkov and A. Vardi, "Quantum Zeno control of coherent dis- sociation," Phys. Rev. A. 84, 021606 (2011).
  35. M. Ogren and K. V. Kheruntsyan, "Role of spatial inhomogeneity in dissociation of trapped molecular condensates," Phys. Rev. A. 82, 013641 (2010).
  36. B. Chen, C. Qiu, S. Chen, J. Guo, L. Q. Chen, Z. Y. Ou, and W. Zhang, "Atom-light hybrid interferometer," Phys. Rev. Lett. 115, 043602 (2015).
  37. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, "Long-distance quantum communication with atomic ensembles and linear optics," Nature 414, 413-418 (2001). https://doi.org/10.1038/35106500
  38. K. Hammerer, A. S. Sorensen, and E. S. Polzik, "Quantum interface between light and atomic ensembles," Rev. Mod. Phys. 82, 1041 (2010).
  39. L. Li, Y. O. Dudin, and A. Kuzmich, "Entanglement between light and an optical atomic excitation," Nature 498, 466-469 (2013). https://doi.org/10.1038/nature12227
  40. L. Q. Chen, G. W. Zhang, C. H. Yuan, J. Jing, Z. Y. Ou, and W. Zhang, "Enhanced Raman scattering by spatially distributed atomic coherence," Appl. Phys. Lett. 95, 041115 (2009).
  41. L. Q. Chen, G. W. Zhang, C. L. Bian, C. H. Yuan, Z. Y. Ou, and W. Zhang, "Observation of the Rabi oscillation of light driven by an atomic spin wave," Phys. Rev. Lett. 105, 133603 (2010).
  42. C. H. Yuan, L. Q. Chen, J. Jing, Z. Y. Ou, and W. Zhang, "Coherently enhanced Raman scattering in atomic vapor," Phys. Rev. A 82, 013817 (2010).
  43. C. H. Yuan, L. Q. Chen, Z. Y. Ou, and W. Zhang, "Correlation-enhanced phase-sensitive Raman scattering in atomic vapors," Phys. Rev. A 87, 053835 (2013).
  44. B. Chen, C. Qiu, L. Q. Chen, K. Zhang, J. Guo, C. H. Yuan, Z. Y. Ou, and W. Zhang, "Phase sensitive Raman process with correlated seeds," Appl. Phys. Lett. 106, 111103 (2015).
  45. J. Xin, "Phase sensitivity enhancement for the SU(1, 1) interferometer using photon level operations," Opt. Express 29, 43970-43984 (2021). https://doi.org/10.1364/OE.444608
  46. J. Guo, S. Ming, Y. Wu, L. Q. Chen, and W. Zhang, "Supersensitive rotation measurement with an orbital angular momentum atom-light hybrid interferometer," Opt. Express 29, 208-218 (2021). https://doi.org/10.1364/OE.409964
  47. Y. Wu, J. Guo, X. Feng, L. Q. Chen, C. H. Yuan, and W. Zhang, "Atom-light hybrid quantum gyroscope," Phys. Rev. Appl. 14, 064023 (2020).
  48. G. F. Jiao, K. Zhang, L. Q. Chen, W. Zhang, and C. H. Yuan, "Nonlinear phase estimation enhanced by an actively correlated Mach-Zehnder interferometer," Phys. Rev. A 102, 033520 (2020).
  49. D. H. Fan, S. Y. Chen, Z. F. Yu, K. Zhang, and L. Q. Chen, "Quality estimation of non-demolition measurement with lossy atom-light hybrid interferometers," Opt. Express 28, 9875-9884 (2020). https://doi.org/10.1364/OE.385580
  50. L. L. Guo, Y. F. Yu, and Z. M. Zhang, "Improving the phase sensitivity of an SU(1, 1) interferometer with photon-added squeezed vacuum light," Opt. Express 26, 29099-29109 (2018). https://doi.org/10.1364/OE.26.029099
  51. X. L. Hu, D. Li, L. Q. Chen, K. Zhang, W. Zhang, and C. H. Yuan, "Phase estimation for an SU(1, 1) interferometer in the presence of phase diffusion and photon losses," Phys. Rev. A 98, 023803 (2018).
  52. Z. D. Chen, C. H. Yuan, H. M. Ma, D. Li, L. Q. Chen, Z. Y. Ou, and W. Zhang, "Effects of losses in the atom-light hybrid SU(1, 1) interferometer," Opt. Express 24, 17766-17778 (2016). https://doi.org/10.1364/OE.24.017766
  53. Z. F. Yu, B. Fang, P. Liu, S. Y. Chen, G. Z. Bao, C. H. Yuan, and L.Q. Chen, "Sensing the performance enhancement via asymmetric gain optimization in the atom-light hybrid interferometer," Opt. Express 30, 11514-11523 (2022). https://doi.org/10.1364/OE.453551
  54. T. Haga, "Spontaneous symmetry breaking in nonsteady modes of open quantum many-body systems," Phys. Rev. A 107, 052208 (2023).
  55. C. Khripkov and A. Vardi, "Quantum Zeno control of coherent dissociation," Phys. Rev. A 84, 021606 (2011).
  56. J. Peise, B. Lucke, L. Pezze, F. Deuretzbacher, W. Ertmer, J. Arlt, A. Smerzi, L. Santos, and C. Klempt, "Interaction-free measurements by quantum Zeno stabilization of ultracold atoms," Nat. Commun. 6, 6811 (2015).
  57. Y. Xu, T. Zhao, Q. Kang, C. Liu, L. Hu, and S. Liu, "Phase sensitivity of an SU(1,1) interferometer in photon-loss via photon operations," Opt. Express 31, 8414-8427 (2023). https://doi.org/10.1364/OE.484574
  58. S. S. Szigeti, R. J. Lewis-Swan, and S. A. Haine, "Pumped-up SU(1, 1) interferometry," Phys. Rev. Lett. 118, 150401 (2017).
  59. M. G. Moore and P. Meystre, "Generating entangled atom-photon pairs from Bose-Einstein condensates," Phys. Rev. Lett. 85, 5026 (2000).
  60. S. A. Haine, "Information-recycling beam splitters for quantum enhanced atom interferometry," Phys. Rev. Lett. 110, 053002 (2013).
  61. S. A. Haine and W. Y. S. Lau, "Generation of atom-light entanglement in an optical cavity for quantum enhanced atom interferometry," Phys. Rev. A 93, 023607 (2016).
  62. G. F. Jiao, K. Y. Zhang, L. Q. Chen, C. H. Yuan, and W. P. Zhang, "Quantum non-demolition measurement based on an SU(1,1)-SU(2)-concatenated atom-light hybrid interferometer," Photon. Res. 10, 475-482 (2022). https://doi.org/10.1364/PRJ.445858
  63. C. Gross, H. Strobel, E. Nicklas, T. Zibold, N. Bar-Gill, G. Kurizki, and M. K. Oberthaler, "Atomic homodyne detection of continuous-variable entangled twin-atom states," Nature 480, 219-223 (2011). https://doi.org/10.1038/nature10654