DOI QR코드

DOI QR Code

Terahertz Spectroscopy and Molecular Dynamics Simulation of Five Citrates

  • Siyu Qian (Key Laboratory of Terahertz Optoelectronics, Ministry of Education) ;
  • Bo Peng (Key Laboratory of Terahertz Optoelectronics, Ministry of Education) ;
  • Boyan Zhang (Key Laboratory of Terahertz Optoelectronics, Ministry of Education) ;
  • Jingyi Shu (Key Laboratory of Terahertz Optoelectronics, Ministry of Education) ;
  • Zhuang Peng (Key Laboratory of Terahertz Optoelectronics, Ministry of Education) ;
  • Bo Su (Key Laboratory of Terahertz Optoelectronics, Ministry of Education) ;
  • Cunlin Zhang (Key Laboratory of Terahertz Optoelectronics, Ministry of Education)
  • Received : 2023.10.30
  • Accepted : 2023.12.07
  • Published : 2024.02.25

Abstract

This research investigation employs a terahertz (THz) time-domain spectroscopy system to study the terahertz spectral characteristics of five different citrates in both solution and solid state. The citrates under examination are lithium citrate, monosodium citrate, disodium citrate, trisodium citrate, and potassium citrate. The results show that the THz absorption coefficients of the first four citrate solutions exhibit a decreasing trend with increasing concentration. However, the potassium citrate solution shows an opposite phenomenon. At the same time, the absorption coefficients of lithium citrate, trisodium citrate, and potassium citrate solutions are compared at the same concentration. The results indicate that the absorption coefficient of citrate solution increases in proportion to the increase of metal cation radius, which is explained from the perspective of the influence of metal cations on hydrogen bonds. In addition, we also study the absorption peaks of solid citrates, and characterize the formation mechanism of the absorption peaks by molecular dynamics simulations. This methodology can be further extended to the study of multitudinous salts, presenting theoretical foundations for the detection in food and medicine industries.

Keywords

Acknowledgement

The authors would like to thank EditSprings (https://www.editsprings.cn) for providing English proofreading.

References

  1. X. Wu, D. Y. Kong, S. B. Hao, Y. S. Zeng, X. Q. Yu, B. L. Zhang, M. C. Dai, S. J. Liu, J. Q. Wang, Z. J. Ren, S. Chen, J. H. Sang, K. Wang, D. D. Zhang, Z. K. Liu, J. Y. Gui, X. J. Yang, Y. Xu, Y. X. Leng, Y. T. Li, L. W. Song, Y. Tian, and R. X. Li, "Generation of 13.9-mJ terahertz radiation from lithium niobate materials," Adv. Mat. 35, 2208947 (2023).
  2. E. Fardelli, A. D'Arco, S. Lupi, D. Billi, R. Moeller, and M. C. Guidi, "Spectroscopic evidence of the radioresistance of Chroococcidiopsis biosignatures: A combined Raman, FT-IR and THz-TDs spectroscopy study," Spectrochim Acta A: Mol. Biomol. Spectrosc. 288, 122148 (2023).
  3. X. Wu, Y. Wang, J. Xue, J. Liu, J. Qin, Z. Hong, and Y. Du, "Solid phase drug-drug pharmaceutical co-crystal formed between pyrazinamide and diflunisal: Structural characterization based on terahertz/Raman spectroscopy combining with DFT calculation," Spectrochim Acta A: Mol. Biomol. Spectrosc. 234, 118265 (2020).
  4. Y. N. Shao, W. M. Gu, Y. T. Qiu, S. F. Wang, Y. Peng, Y. M. Zhu, and S. L. Zhuang, "Lipids monitoring in Scenedesmus obliquus based on terahertz technology," Biotechnol. Biofuels 13, 161 (2020).
  5. X. Y. Lin and S. Nagl, "A microfluidic chip for rapid analysis of DNA melting curves for BRCA2 mutation screening," Lab Chip 20, 3824 (2020).
  6. K. Yang, X. Yang, X. Zhao, M. L. de la Chapelle, and W. L. Fu, "THz spectroscopy for a rapid and label-free cell viability assay in a microfluidic chip based on an optical clearing agent," Anal. Chem. 91, 785-791 (2019). https://doi.org/10.1021/acs.analchem.8b03665
  7. M. Ohlin, I. Iranmanesh, A. E. Christakou, and M. Wiklund, "Temperature-controlled MPa-pressure ultrasonic cell manipulation in a microfluidic chip," Lab Chip 15, 3341-3349 (2015). https://doi.org/10.1039/C5LC00490J
  8. Q. H. Meng, S. Y. Qian, J. Ding, Q. J. Li, X. Y. Zhao, B. Su, and C. L. Zhang, "Terahertz absorption characteristics of ammonium salt solution based on self-sampling microfluidic chip," Sci. Rep. 12, 8144 (2022).
  9. B. Y. Zhang, S. Y. Qian, B. Peng, B. Su, Z. Peng, H. L. Cui, S. B. Zhang, and C. L. Zhang, "Terahertz characteristics of hydroxygraphene based on microfluidic technology," Curr. Opt. Photonics 7, 463-470 (2023).
  10. E. L. Roberts, "A case of chronic mania treated with lithium citrate and terminating fatally," Med. J. Aust. 2, 261-262 (1950). https://doi.org/10.5694/j.1326-5377.1950.tb81010.x
  11. A. Apelblat and E. Manzurola, "Cryoscopic studies of aqueous solutions of tartaric acid, sodium hydrogen tartrate, potassium tartrate, sodium dihydrogen citrate, potassium dihydrogen citrate, disodium hydrogen citrate, sodium citrate and potassium citrate," J. Chem. Thermodyn. 35, 1225-1236 (2003). https://doi.org/10.1016/S0021-9614(03)00016-8
  12. Y. Zhong, G. X. Xie, F. Mao, J. Ding, F. Y. Yue, S. Q. Chen, X. H. Lu, C. B. Jing, and J. H. Chu, "Thin-wall cyclic olefin copolymer tube waveguide for broadband terahertz transmission," Opt. Mater. 98, 109490 (2019).
  13. K. Qian, Z. C. Bai, R. Wu, J. H. Wang, B. Su, Y. W. Wen, and C. L. Zhang, "Terahertz transmission characteristics of electrolyte solution," Spectrosc. Spect. Anal. 41, 2018-2022 (2021).
  14. K. C. Song, Z. Tian, W. L. Zhang, and M. W. Wang, "Temperature-dependent birefringence of lithium triborate, LBO in the THz regime," Sci. Rep. 7, 8122 (2017).
  15. J. Chen, Y. Q. Chen, H. W. Zhao, G. J. Bastiaans, and X.-C. Zhang, "Absorption coefficients of selected explosives and related compounds in the range of 0.1-2.8 THz," Opt. Express 15, 12060-12067 (2007). https://doi.org/10.1364/OE.15.012060
  16. K. L. Ngai, "Interpretation of the GHz to THz dielectric relaxation dynamics of water in the framework of the coupling model," J. Mol. Liq. 253, 113-118 (2018). https://doi.org/10.1016/j.molliq.2018.01.039
  17. K. Matsumura, K. Kawase, and K. Takeya, "Observation of sublimation of ice using terahertz spectroscopy," R. Soc. Open Sci. 7, 192083 (2020).
  18. R. Kumar, J. R. Schmidt, and J. L. Skinner, "Hydrogen bonding definitions and dynamics in liquid water," J. Chem. Phys. 126, 204107 (2007).
  19. Y. T. Gao, H. W. Fang, and K. Ni, "A hierarchical clustering method of hydrogen bond networks in liquid water undergoing shear flow," Sci. Rep. 11, 9542 (2021).
  20. J. D. Cruzan, L. B. Braly, K. Liu, M. G. Brown, J. G. Loeser, and R. J. Saykally, "Quantifying hydrogen bond cooperativity in water: VRT spectroscopy of the water tetramer," Science 271, 59-62 (1996). https://doi.org/10.1126/science.271.5245.59
  21. J. O. de Urbina and G. Sese, "Orientational dynamics in methanol: Influence of temperature and hydrogen bonding," J. Mol. Liq. 301, 112374 (2020).
  22. Y. Gu, S. Y. Li, Y. H. Xu, J. G. Han, M. Gu, Z. P. Cai, Y. Lv, G. X. Xie, T. B. Ma, and J. B. Luo, "The effect of magnetic field on the hydration of cation in solution revealed by THz spectroscopy and MDs," Colloids Surf. A Physicochem. Eng. Asp. 582, 123822 (2019).
  23. B. Yan, L. Zhao, W. H. Wang, and X. Tan, "NMR coefficients and viscosity coefficients of CuCl2 and CuSO4 and their relationship with the structure of water molecules," Acta Phys.- Chim. Sin. 25, 684-688 (2009). https://doi.org/10.3866/PKU.WHXB200904181
  24. A. W. Omta, M. F. Kropman, S. Woutersen, and H. J. Bakker, "Negligible effect of ions on the hydrogen-bond structure in liquid water," Science 301, 347-349 (2003). https://doi.org/10.1126/science.1084801
  25. B. Hribar, N. T. Southall, V. Vlachy, and K. A. Dill, "How ions affect the structure of water," J. Am. Chem. Soc. 124, 12302- 12302 (2002). https://doi.org/10.1021/ja026014h
  26. J. W. Bennett, M. E. Raglione, S. M. Oburn, L. R. MacGillivray, M. A. Arnold, and S. E. Mason, "DFT computed dielectric response and THz Spectra of organic co-crystals and their constituent components," Molecular 24, 959 (2019).
  27. P. W. Guan, G. Houchins, and V. Viswanathan, "Uncertainty quantification of DFT-predicted finite temperature thermodynamic properties within the Debye model," J. Chem. Phys. 151, 244702 (2019).