DOI QR코드

DOI QR Code

Recent Research on Self-interference Incoherent Digital Holography

  • Youngrok Kim (Department of Information Display, Kyung Hee University) ;
  • Ki-Hong Choi (Digital Holography Research Section, Electronics and Telecommunications Research Institution) ;
  • Chihyun In (Department of Information Display, Kyung Hee University) ;
  • Keehoon Hong (Digital Holography Research Section, Electronics and Telecommunications Research Institution) ;
  • Sung-Wook Min (Department of Information Display, Kyung Hee University)
  • 투고 : 2023.10.30
  • 심사 : 2023.12.07
  • 발행 : 2024.02.25

초록

This paper presents a brief introduction to self-interference incoherent digital holography (SIDH). Holography conducted under incoherent light conditions has various advantages over digital holography performed with a conventional coherent light source. We categorize the methods for SIDH, which divides the incident light into two waves and modulates them differently. We also explore various optical concepts and techniques for the implementation and advancement of SIDH. This review presents the system design, performance analysis, and improvement of SIDH, as well as recent applications of SIDH, including optical sectioning and deep-learning-based SIDH.

키워드

과제정보

Institute for Information and Communications Technology Promotion (2019-0-00001).

참고문헌

  1. D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948). https://doi.org/10.1038/161777a0
  2. J. W. Goodman, Introduction to Fourier optics (Roberts & Co, USA, 2005).
  3. S. Ulf and J. Werner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer-Verlag, Germany, 2005).
  4. M. K. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications, (Springer Series in Optical Sciences vol. 162) (Springer New York, USA, 2011).
  5. X. Yu, J. Hong, C. Liu, and M. K. Kim, "Review of digital holographic microscopy for three-dimensional profiling and tracking," Opt. Eng. 53, 112306 (2014).
  6. F. Yaras, H. Kang, and L. Onural, "State of the art in holographic displays: A survey," J. Disp. Technol. 6, 443-454 (2010). https://doi.org/10.1109/JDT.2010.2045734
  7. C. Chang, K. Bang, G. Wetzstein, B. Lee, and L. Gao, "Toward the next-generation VR/AR optics: A review of holographic near-eye displays from a human-centric perspective," Optica 7, 1563-1578 (2020). https://doi.org/10.1364/OPTICA.406004
  8. P.-A. Blanche, "Holography, and the future of 3D display," Light. Adv. Manuf. 2, 446-459 (2021).
  9. J. An, K. Won, and H.-S. Lee, "Past, current, and future of holographic video display," Appl. Opt. 61, B237-B245 (2022). https://doi.org/10.1364/AO.444833
  10. J.-H. Park, "Recent progress in computer-generated holography for three-dimensional scenes," J. Inf. Disp. 18, 1-12 (2017). https://doi.org/10.1080/15980316.2016.1255672
  11. E. Sahin, E. Stoykova, J. Makinen, and A. Gotchev, "Computer-generated holograms for 3D imaging: A survey," ACM Comput. Surv. 53, 32 (2020).
  12. N. Kipnis, History of the Principle of Interference of Light (Birkhauser Basel, 1991).
  13. A. A. Michelson and E. W. Morley, "On the Relative Motion of the Earth and the Luminiferous Ether," Am. J. Sc. 34, 333-345 (1887). https://doi.org/10.2475/ajs.s3-34.203.333
  14. G. W. Stroke and R. C. Restrick III, "Holography with spatially noncoherent light," Appl. Phys. Lett. 7, 229-231 (1965). https://doi.org/10.1063/1.1754392
  15. A. W. Lohmann, "Wavefront reconstruction for incoherent objects," J. Opt. Soc. Am. 55, 1555-1556 (1965). https://doi.org/10.1364/JOSA.55.001555
  16. H. Worthington, "Production of holograms with incoherent illumination," J. Opt. Soc. Am. 56, 1397-1398 (1966). https://doi.org/10.1364/JOSA.56.001397
  17. O. Bryngdahl and A. Lohmann, "One-dimensional holography with spatially incoherent light," J. Opt. Soc. Am. 58, 625-628 (1968). https://doi.org/10.1364/JOSA.58.000625
  18. T.-C. Poon, Optical Scanning Holography with MATLAB® (Springer US, USA, 2007).
  19. T.-C. Poon, "Optical scanning holography-A review of recent progress," J. Opt. Soc. Korea 13, 406-415 (2009). https://doi.org/10.3807/JOSK.2009.13.4.406
  20. J. Rosen and G. Brooker, "Digital spatially incoherent Fresnel holography," Opt. Lett. 32, 912-914 (2007). https://doi.org/10.1364/OL.32.000912
  21. B. Katz and J. Rosen, "Super-resolution in incoherent optical imaging using synthetic aperture with Fresnel elements," Opt. Express 18, 962-972 (2010). https://doi.org/10.1364/OE.18.000962
  22. P. J. Peters, "Incoherent holograms with mercury light source," Appl. Phys. Lett. 8, 209-210 (1966). https://doi.org/10.1063/1.1754558
  23. O. Bryngdahl and A. Lohmann, "Variable magnification in incoherent holography," Appl. Opt. 9, 231-232 (1970). https://doi.org/10.1364/AO.9.000231
  24. S.-G. Kim, B. Lee, and E.-S. Kim, "Removal of bias and the conjugate image in incoherent on-axis triangular holography and real-time reconstruction of the complex hologram," Appl. Opt. 36, 4784-4791 (1997). https://doi.org/10.1364/AO.36.004784
  25. E. Ribak, C. Roddier, F. Roddier, and J. B. Breckinridge, "Signal-to-noise limitations in white light holography," Appl. Opt. 27, 1183-1186 (1988). https://doi.org/10.1364/AO.27.001183
  26. K. Itoh, T. Inoue, T. Yoshida, and Y. Ichioka, "Interferometric super multispectral imaging," Appl. Opt. 29, 1625-1630 (1990). https://doi.org/10.1364/AO.29.001625
  27. I. Moreno, G. Paez, and M. Strojnik, "Dove prism with increased throughput for implementation in a rotationalshearing interferometer," Appl. Opt. 42, 4514-4521 (2003). https://doi.org/10.1364/AO.42.004514
  28. K. Watanabe and T. Nomura, "Recording spatially incoherent Fourier hologram using dual channel rotational shearing interferometer," Appl. Opt. 54, A18-A22 (2015). https://doi.org/10.1364/AO.54.000A18
  29. T. Nomura, K. Itoh, and Y. Ichioka, "Hybrid high speed pattern matching using a binary incoherent hologram generated by a rotational shearing interferometer," Appl. Opt. 28, 4987-4991 (1989). https://doi.org/10.1364/AO.28.004987
  30. K. Watanabe and T. Nomura, "Spatially incoherent Fourier digital holography by four-step phase-shifting rotational shearing interferometer and its image quality," Opt. Rev. 24, 351-360 (2017). https://doi.org/10.1007/s10043-017-0327-x
  31. M. K. Kim, "Adaptive optics by incoherent digital holography," Opt. Lett. 37, 2694-2696 (2012). https://doi.org/10.1364/OL.37.002694
  32. M. K. Kim, "Full color natural light holographic camera," Opt. Express 21, 9636-9642 (2013). https://doi.org/10.1364/OE.21.009636
  33. J. Hong and M. Kim, "Overview of techniques applicable to self-interference incoherent digital holography," J. Eur. Opt. Soc. Rapid Pub. 8, 13077 (2013).
  34. O. Cossairt, N. Matsuda, and M. Gupta, "Digital refocusing with incoherent holography," in Proc. 2014 IEEE International Conference on Computational Photography-ICCP (Santa Clara, CA, USA, May 2-4, 2014), pp. 1-9.
  35. D. C. Clark and M. K. Kim, "Nonscanning three-dimensional differential holographic fluorescence microscopy," J. Electron. Imaging 24, 043014 (2015).
  36. T. Yanagawa, R. Abe, and Y. Hayasaki, "Three-dimensional mapping of fluorescent nanoparticles using incoherent digital holography," Opt. Lett. 40, 3312-3315 (2015). https://doi.org/10.1364/OL.40.003312
  37. A. W. Lohmann and W. T. Rhodes, "Two-pupil synthesis of optical transfer functions," Appl. Opt. 17, 1141-1151 (1978). https://doi.org/10.1364/AO.17.001141
  38. G. Pedrini, H. Li, A. Faridian, and W. Osten, "Digital holography of self-luminous objects by using a Mach-Zehnder setup," Opt. Lett. 37, 713-715 (2012). https://doi.org/10.1364/OL.37.000713
  39. D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, "Spectrally resolved incoherent holography: 3D spatial and spectral imaging using a Mach-Zehnder radial-shearing interferometer," Opt. Lett. 39, 1857-1860 (2014). https://doi.org/10.1364/OL.39.001857
  40. J. Hong and M. K. Kim, "Single-shot self-interference incoherent digital holography using off-axis configuration," Opt. Lett. 38, 5196-5199 (2013). https://doi.org/10.1364/OL.38.005196
  41. D. Muhammad, C. M. Nguyen, J. Lee, and H.-S. Kwon, "Spatially incoherent off-axis Fourier holography without using spatial light modulator (SLM)," Opt. Express 24, 22097-22103 (2016).  https://doi.org/10.1364/OE.24.022097
  42. C. M. Nguyen, D. Muhammad, and H.-S. Kwon, "Spatially incoherent common-path off-axis color digital holography," Appl. Opt. 57, 1504-1509 (2018). https://doi.org/10.1364/AO.57.001504
  43. D. Muhammad, C. M. Nguyen, J. Lee, and H.-S. Kwon, "Incoherent off-axis Fourier holography for different colors using a curved mirror," Opt. Commun. 393, 25-28 (2017). https://doi.org/10.1016/j.optcom.2017.02.027
  44. C. M. Nguyen and H.-S. Kwon, "Common-path off-axis incoherent Fourier holography with a maximum overlapping interference area," Opt. Lett. 44, 3406-3409 (2019). https://doi.org/10.1364/OL.44.003406
  45. R. Kelner and J. Rosen, "Spatially incoherent single channel digital Fourier holography," Opt. Lett. 37, 3723-3725 (2012). https://doi.org/10.1364/OL.37.003723
  46. N. Siegel and G. Brooker, "Improved axial resolution of finch fluorescence microscopy when combined with spinning disk confocal microscopy," Opt. Express 22, 22298-22307 (2014). https://doi.org/10.1364/OE.22.022298
  47. A. Vijayakumar, Y. Kashter, R. Kelner, and J. Rosen, "Coded aperture correlation holography-A new type of incoherent digital holograms," Opt. Express 24, 12430-12441 (2016). https://doi.org/10.1364/OE.24.012430
  48. J. Rosen and G. Brooker, "Fluorescence incoherent color holography," Opt. Express 15, 2244-2250 (2007). https://doi.org/10.1364/OE.15.002244
  49. J. Rosen and G. Brooker, "Non-scanning motionless fluorescence three-dimensional holographic microscopy," Nat. Photonics 2, 190-195 (2008). https://doi.org/10.1038/nphoton.2007.300
  50. P. Bouchal and Z. Bouchal, "Wide-field common-path incoherent correlation microscopy with a perfect overlapping of interfering beams," J. Eur. Opt. Soc. publications 8, 13011 (2013).
  51. B. Katz, J. Rosen, R. Kelner, and G. Brooker, "Enhanced resolution and throughput of Fresnel incoherent correlation holography (FINCH) using dual diffractive lenses on a spatial light modulator (SLM)," Opt. Express 20, 9109-9121 (2012). https://doi.org/10.1364/OE.20.009109
  52. N. Siegel, J. Rosen, and G. Brooker, "Reconstruction of objects above and below the objective focal plane with dimensional fidelity by finch fluorescence microscopy," Opt. Express 20, 19822-19835 (2012). https://doi.org/10.1364/OE.20.019822
  53. X. Quan, O. Matoba, and Y. Awatsuji, "Single-shot incoherent digital holography using a dual-focusing lens with diffraction gratings," Opt. Lett. 42, 383-386 (2017). https://doi.org/10.1364/OL.42.000383
  54. R. Kelner, J. Rosen, and G. Brooker, "Enhanced resolution in Fourier incoherent single channel holography (FISCH) with reduced optical path difference," Opt. Express 21, 20131-20144 (2013). https://doi.org/10.1364/OE.21.020131
  55. L. M. Mugnier and G. Y. Sirat, "On-axis conoscopic holography without a conjugate image," Opt. Lett. 17, 294-296 (1992). https://doi.org/10.1364/OL.17.000294
  56. L. M. Mugnier, G. Y. Sirat, and D. Charlot, "Conoscopic holography: two-dimensional numerical reconstructions," Opt. Lett. 18, 66-68 (1993). https://doi.org/10.1364/OL.18.000066
  57. L. M. Mugnier, "Conoscopic holography: Toward three-dimensional reconstructions of opaque objects," Appl. Opt. 34, 1363-1371 (1995). https://doi.org/10.1364/AO.34.001363
  58. O. Mudanyali, D. Tseng, C. Oh, S.O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, "Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications," Lab Chip 10, 1417-1428 (2010). https://doi.org/10.1039/c000453g
  59. N. Siegel, V. Lupashin, B. Storrie, and G. Brooker, "High-magnification super-resolution FINCH microscopy using birefringent crystal lens interferometers," Nat. Photon. 10, 802-808 (2016). https://doi.org/10.1038/nphoton.2016.207
  60. N. Siegel and G. Brooker, "Single shot holographic super-resolution microscopy," Opt. Express 29, 15953-15968 (2021). https://doi.org/10.1364/OE.424175
  61. T. Tahara, A. Ishii, T. Ito, Y. Ichihashi, and R. Oi, "Single-shot wavelength-multiplexed digital holography for 3D fluorescent microscopy and other imaging modalities," Appl. Phys. Lett. 117, 031102 (2020).
  62. T. Tahara, T. Koujin, A. Matsuda, A. Ishii, T. Ito, Y. Ichihashi, and R. Oi, "Incoherent color digital holography with computational coherent superposition for fluorescence imaging [Invited]," Appl. Opt. 60, A260-A267 (2021). https://doi.org/10.1364/AO.406068
  63. T. Shimano, Y. Nakamura, K. Tajima, M. Sao, and T. Hoshizawa, "Lensless light-field imaging with Fresnel zone aperture: quasi-coherent coding," Appl. Opt. 57, 2841-2850 (2018). https://doi.org/10.1364/AO.57.002841
  64. J. Wu, H. Zhang, W. Zhang, G. Jin, L. Cao, and G. Barbastathis, "Single-shot lensless imaging with Fresnel zone aperture and incoherent illumination," Light Sci. Appl. 9, 53 (2020).
  65. J. Wu, L. Cao, and G. Barbastathis, "DNN-FZA camera: A deep learning approach toward broadband FZA lensless imaging," Opt. Lett. 46, 130-133 (2021). https://doi.org/10.1364/OL.411228
  66. X. Chen, X. Pan, T. Nakamura, T. S. Takeyama, T. Shimano, K. Tajima, and M. Yamaguchi, "Wave-optics-based image synthesis for super resolution reconstruction of a FZA lensless camera," Opt. Express 31, 12739-12755
  67. J. Chen, F. Wang, Y. Li, X. Zhang, K. Yao, Z. Guan, and X. Liu, "Lensless computationally defined confocal incoherent imaging with a Fresnel zone plane as coded aperture," Opt. Lett. 48, 4520-4523
  68. A. Vijayakumar, Y. Kashter, R. Kelner, and J. Rosen, "Coded aperture correlation holography system with improved performance," Appl. Opt. 56, F67-F77 (2017). https://doi.org/10.1364/AO.56.000F67
  69. J. Rosen, V. Anand, M. Rai, S. Mukherjee, and A. Bulbul, "Review of 3D imaging by coded aperture correlation holography (COACH)," Appl. Sci. 9, 605 (2019).
  70. J. Rosen, "Advanced imaging methods using coded aperture digital holography," Eng. Proc. 34, 2 (2023).
  71. N. Antipa, G. Kuo, R. Heckel, B. Mildenhall, E. Bostan, R. Ng, and L. Waller, "DiffuserCam: Lensless single-exposure 3D imaging," Optica 5, 1-9 (2018). https://doi.org/10.1364/OPTICA.5.000001
  72. S. Mukherjee, A. Vijayakumar, M. Kumar, and J. Rosen, "3D Imaging through Scatterers with Interferenceless Optical System," Sci. Rep. 8, 1134 (2018).
  73. A. Bulbul, N. Hai, and J. Rosen, "Coded aperture correlation holography (COACH) with a superior lateral resolution of FINCH and axial resolution of conventional direct imaging systems," Opt. Express 29, 42106-42118 (2021). https://doi.org/10.1364/OE.446945
  74. A. Bulbul, A. Vijayakumar, and J. Rosen, "Partial aperture imaging by systems with annular phase coded masks," Opt. Express 25, 33315-33329 (2017).  https://doi.org/10.1364/OE.25.033315
  75. I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268-1270 (1997). https://doi.org/10.1364/OL.22.001268
  76. J. Rosen and R. Kelner, "Modified Lagrange invariants and their role in determining transverse and axial resolutions of self-interference incoherent holographic systems," Opt. Express 22, 29048-29066 (2014). https://doi.org/10.1364/OE.22.029048
  77. G. Pedrini, H. Li, A. Faridian, and W. Osten, "Digital holography of self-luminous objects by using a Mach-Zehnder setup," Opt. Lett. 37, 713-715 (2012). https://doi.org/10.1364/OL.37.000713
  78. T. Tahara, K. Ito, T. Kakue, M. Fujii, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, "Parallel phase-shifting digital holographic microscopy," Biomed. Opt. Express 1, 610-616 (2010). https://doi.org/10.1364/BOE.1.000610
  79. T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, "Single-shot phase-shifting incoherent digital holography," J. Opt. 19, 065705 (2017).
  80. T. Tahara, A. Ishii, T. Ito, Y. Ichihashi, and R. Oi, "Single-shot wavelength-multiplexed digital holography for 3d fluorescent microscopy and other imaging modalities," Appl. Phys. Lett. 117, 031102 (2020).
  81. T. Tahara, T. Ito, Y. Ichihashi, and R. Oi, "Single-shot incoherent color digital holographic microscopy system with static polarization-sensitive optical elements," J. Opt. 22, 105702 (2020).
  82. K. Choi, K.-I. Joo, T.-H. Lee, H.-R. Kim, J. Yim, H. Do, and S.-W. Min, "Compact self-interference incoherent digital holographic camera system with real-time operation," Opt. Express 27, 4818-4833 (2019). https://doi.org/10.1364/OE.27.004818
  83. T. Tahara, Y. Kozawa, and R. Oi, "Single-path single-shot phase-shifting digital holographic microscopy without a laser light source," Opt. Express 30, 1182-1194 (2022). https://doi.org/10.1364/OE.442661
  84. S. Sakamaki, N. Yoneda, and T. Nomura, "Single-shot in-line Fresnel incoherent holography using a dual-focus checkerboard lens," Appl. Opt. 59, 6612-6618 (2020). https://doi.org/10.1364/AO.393176
  85. Y. Zhang, M.-T. Wu, M.-Y. Tang, F.-Y. Ma, E.-J. Liang, Y.-L. Du, Z.-Y. Duan, and Q.-X Gong, "Fresnel incoherent correlation hologram recording in real-time," Optik 241, 166938 (2021).
  86. T. Nobukawa, Y. Katano, M. Goto, T. Muroi, K. Hagiwara, and N. Ishii, "Grating-based in-line geometric-phase-shifting incoherent digital holographic system toward 3D videography," Opt. Express 30, 27825-27840 (2022). https://doi.org/10.1364/OE.460187
  87. J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, "Fabrication of ideal geometric-phase holograms with arbitrary wavefronts," Optica 2, 958-964 (2015). https://doi.org/10.1364/OPTICA.2.000958
  88. K. Gao, H.-H. Cheng, A. K. Bhowmik, and P. J. Bos, "Thinfilm Pancharatnam lens with low f-number and high quality," Opt. Express 23, 26086-26094 (2015). https://doi.org/10.1364/OE.23.026086
  89. N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, "Thin waveplate lenses of switchable focal length-new generation in optics," Opt. Express 23, 25783-25794 (2015). https://doi.org/10.1364/OE.23.025783
  90. Z. Liu, D. Wang, H. Gao, M. Li, H. Zhou, and C. Zhang, "Metasurface-enabled augmented reality display: A review," Proc. SPIE 5, 034001 (2023).
  91. S. Pancharatnam, "Generalized theory of interference, and its applications," P. Indian. Acad. Sci. A 44, 247-262 (1956). https://doi.org/10.1007/BF03046050
  92. M. V. Berry, "Quantal phase factors accompanying adiabatic changes," P. Roy. Soc. Lond. A. Mat. 392, 45-57 (1984). https://doi.org/10.1098/rspa.1984.0023
  93. D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, "Dielectric gradient metasurface optical elements," Science 345, 298-302 (2014). https://doi.org/10.1126/science.1253213
  94. N. Yu and F. Capasso, "Flat optics with designer metasurfaces," Nat. Mater 13, 139-150 (2014). https://doi.org/10.1038/nmat3839
  95. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, "Planar photonics with metasurfaces," Science 339, 1232009 (2013).
  96. R. Bhandari, "Polarization of light and topological phases," Phys. Rep. 281, 1-64 (1997). https://doi.org/10.1016/S0370-1573(96)00029-4
  97. F. S. Roux, "Geometric phase lens," J. Opt. Soc. Am. A 23, 476-482 (2006). https://doi.org/10.1364/JOSAA.23.000476
  98. T. Tahara, T. Ito, Y. Ichihashi, and R. Oi, "Multiwavelength three-dimensional microscopy with spatially incoherent light, based on computational coherent superposition," Opt. Lett. 45, 2482-2485 (2020). https://doi.org/10.1364/OL.386264
  99. P. Hariharan and P. Ciddor, "An achromatic phase-shifter operating on the geometric phase," Opt. Commun. 110, 13-17 (1994). https://doi.org/10.1016/0030-4018(94)90163-5
  100. K. Choi, J. Yim, S. Yoo, and S.-W. Min, "Self-interference digital holography with a geometric-phase hologram lens," Opt. Lett. 42, 3940-3943 (2017). https://doi.org/10.1364/OL.42.003940
  101. K. Choi, J. Yim, and S.-W. Min, "Achromatic phase shifting self-interference incoherent digital holography using linear polarizer and geometric phase lens," Opt. Express 26, 16212-16225 (2018). https://doi.org/10.1364/OE.26.016212
  102. K. Choi, J.-W. Lee, J. Shin, K. Hong, J. Park, and H.-R. Kim, "Real-time noise-free inline self-interference incoherent digital holography with temporal geometric phase multiplexing," Photonics Res. 11, 906-916 (2023). https://doi.org/10.1364/PRJ.476354
  103. D. Liang, Q. Zhang, J. Wang, and J. Liu, "Single-shot Fresnel incoherent digital holography based on geometric phase lens," J. Mod. Opt. 67, 92-98 (2020). https://doi.org/10.1080/09500340.2019.1695970
  104. T. Tahara and R. Oi, "Palm-sized single-shot phase-shifting incoherent digital holography system," OSA Continuum 4, 2372-2380 (2021). https://doi.org/10.1364/OSAC.431930
  105. J. Ahn, K. Ko, J.-H. Kyhm, H.-S Ra, H. Bae, D.-Y. Kim J. Jang, T.W. Kim, S. Choi, J.-H. Kang, N. Kwon, S. Park, B.-K. Ju, T.-C. Poon, and M.-C. Park, "Near-infrared self-powered linearly polarized photodetection and digital incoherent holography using WSe2/ReSe2 van der Waals heterostructure," ACS nano 15, 17917-17925 (2021). https://doi.org/10.1021/acsnano.1c06234
  106. H. Zhou, L. Huang, X. Li, X. Li, G. Geng, K. An, Z. Li, and Y. Wang, "All-dielectric bifocal isotropic metalens for a single-shot hologram generation device," Opt. Express 28, 21549-21559 (2020). https://doi.org/10.1364/OE.396372
  107. J. Lee, Y. Kim, K. Choi, J. Hahn, S.-W. Min, and H. Kim, "Digital incoherent compressive holography using a geometric phase metalens," Sensors 21, 5624 (2021).
  108. J. Rosen, N. Siegel, and G. Brooker, "Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by finch fluorescence microscopic imaging," Opt. Express 19, 26249-26268 (2011). https://doi.org/10.1364/OE.19.026249
  109. G. Brooker, N. Siegel, V. Wang, and J. Rosen, "Optimalresolution in Fresnel incoherent correlation holographic fluorescence microscopy," Opt. Express 19, 5047-5062 (2011). https://doi.org/10.1364/OE.19.005047
  110. P. Bouchal, J. Kapitan, R. Chmelik, and Z. Bouchal, "Point spread function and two-point resolution in Fresnel incoherent correlation holography," Opt. Express 19, 15603-15620 (2011). https://doi.org/10.1364/OE.19.015603
  111. P. Jeon, J. Kim, H. Lee, H.-S. Kwon, and D. Kim, "Comparative study on resolution enhancements in fluorescencestructured illumination Fresnel incoherent correlation holography," Opt. Express 29, 9231-9241 (2021). https://doi.org/10.1364/OE.417206
  112. X. Lai, S. Zeng, X. Lv, J. Yuan, and L. Fu, "Violation of the Lagrange invariant in an optical imaging system," Opt. Lett. 38, 1896-1898 (2013). https://doi.org/10.1364/OL.38.001896
  113. X. Lai, S. Xiao, Y. Guo, X. Lv, and S. Zeng, "Experimentally exploiting the violation of the Lagrange invariant for resolution improvement," Opt. Express 23, 31408-31418 (2015). https://doi.org/10.1364/OE.23.031408
  114. B. Katz and J. Rosen, "Could SAFE concept be applied for designing a new synthetic aperture telescope?" Opt. Express 19, 4924-4936 (2011). https://doi.org/10.1364/OE.19.004924
  115. Y. Kashter and J. Rosen, "Enhanced-resolution using modified configuration of Fresnel incoherent holographic recorder with synthetic aperture," Opt. Express 22, 20551-20565 (2014). https://doi.org/10.1364/OE.22.020551
  116. M. R. Rai and J. Rosen, "Optical incoherent synthetic aperture imaging by superposition of phase-shifted optical transfer functions," Opt. Lett. 46, 1712-1715 (2021). https://doi.org/10.1364/OL.417765
  117. J. P. Desai, R. Kumar, and J. Rosen, "Optical incoherent imaging using annular synthetic aperture with the superposition of phase-shifted optical transfer functions," Opt. Lett. 47, 4012-4015 (2022). https://doi.org/10.1364/OL.466375
  118. Y. Kashter, A. Vijayakumar, Y. Miyamoto, and J. Rosen, "Enhanced super resolution using Fresnel incoherent correlation holography with structured illumination," Opt. Lett. 41, 1558-1561 (2016). https://doi.org/10.1364/OL.41.001558
  119. B. Katz, D. Wulich, and J. Rosen, "Optimal noise suppression in Fresnel incoherent correlation holography (FINCH) configured for maximum imaging resolution," Appl. Opt. 49, 5757-5763 (2010). https://doi.org/10.1364/AO.49.005757
  120. T. Nobukawa, Y. Katano, T. Muroi, N. Kinoshita, and N. Ishii, "Sampling requirements and adaptive spatial averaging for incoherent digital holography," Opt. Express 27, 33634-33651 (2019). https://doi.org/10.1364/OE.27.033634
  121. K. Choi, K. Hong, J. Park, and S.-W. Min, "Michelson-interferometric-configuration-based incoherent digital holography with a geometric phase shifter," Appl. Opt. 59, 1948-1953 (2020). https://doi.org/10.1364/AO.383118
  122. C. Jang, J. Kim, D. C. Clark, S. Lee, B. Lee, and M. K. Kim, "Holographic fluorescence microscopy with incoherent digital holographic adaptive optics," J. Biomed. Opt. 20, 111204 (2015).
  123. T. Muroi, T. Nobukawa, Y. Katano, K. Hagiwara, and N. Ishii, "Compensation for reconstructed image distortion using camera model with lens distortion in incoherent digital holography," Opt. Rev. 29, 420-428 (2022). https://doi.org/10.1007/s10043-022-00754-z
  124. R. Kelner, B. Katz, and J. Rosen, "Optical sectioning using a digital Fresnel incoherent-holography-based confocal imaging system," Optica 1, 70-74 (2014). https://doi.org/10.1364/OPTICA.1.000070
  125. D. L. Donoho, "Compressed sensing," IEEE Trans. Inform. Theory 52, 1289-1306 (2006). https://doi.org/10.1109/TIT.2006.871582
  126. Y. Rivenson, A. Stern, and J. Rosen, "Compressive multiple view projection incoherent holography," Opt. Express 19, 6109-6118 (2011). https://doi.org/10.1364/OE.19.006109
  127. J. Weng, D. C. Clark, and M. K. Kim, "Compressive sensing sectional imaging for single-shot in-line self-interference incoherent holography," Opt. Commun. 366, 88-93 (2016). https://doi.org/10.1016/j.optcom.2015.12.039
  128. T. Man, Y. Wan, F. Wu, and D. Wang, "Self-interference compressive digital holography with improved axial resolution and signal-to-noise ratio," Appl. Opt. 56, F91-F96 (2017). https://doi.org/10.1364/AO.56.000F91
  129. L. A. DeMars, M. Mikula-Zdankowska, K. Falaggis, and R. Porras-Aguilar, "Single-shot phase calibration of a spatial light modulator using geometric phase interferometry," Appl. Opt. 59, D125-D130 (2020). https://doi.org/10.1364/AO.383610
  130. P. Kumar and N. K. Nishchal, "Phase response optimization of a liquid crystal spatial light modulator with partially coherent light," Appl. Opt. 60, 10795-10801 (2021). https://doi.org/10.1364/AO.439654
  131. A. Georgieva, A. Ezerskii, A. Chernykh, and N. Petrov, "Numerical displacement of target wavefront formation plane with DMD-based modulation and geometric phase holographic registration system," Atmos. Ocean. Opt. 35, 258-265 (2022). https://doi.org/10.1134/S1024856022030034
  132. Y. Kim, S. Park, H. Baek, and S.-W. Min, "Voxel characteristic estimation of integral imaging display system using selfinterference incoherent digital holography," Opt. Express 30, 902-913 (2022). https://doi.org/10.1364/OE.444925
  133. Y. Kim, H. Sung, W. Son, D.W. Seo, C. In, and S.-W. Min, "Depth formulation assessment of 1D light field display using self-interference incoherent digital holography," J. Inf. Disp. 1-10 (2023).
  134. P. Wu, D. Zhang, J. Yuan, S. Zeng, H. Gong, Q. Luo, and X. Yang, "Large depth-of-field fluorescence microscopy based on deep learning supported by Fresnel incoherent correlation holography," Opt. Express 30, 5177-5191 (2022). https://doi.org/10.1364/OE.451409
  135. J. Moon, K. Choi, K. Hong, J. Park, and S. K. Jung, "Learning-based noise reduction method for incoherent digital holography," in Digital Holography and Three-Dimensional Imaging (Optica Publishing Group, 2022), paper Th4A-1.
  136. T. Tahara and T. Shimobaba, "High-speed phase-shifting incoherent digital holography," Appl. Phys. B 129, 96 (2023).
  137. T. Huang, Q. Zhang, J. Li, X. Lu, J. Di, L. Zhong, and Y. Qin, "Single-shot Fresnel incoherent correlation holography via deep learning based phase-shifting technology," Opt. Express 31, 12349-12356 (2023). https://doi.org/10.1364/OE.486289
  138. H. Yu, Y. Kim, D. Yang, W. Seo, Y. Kim, J.-Y. Hong, H. Song, G. Sung, Y. Sung, S.-W. Min, and H.-S Lee, "Deep learning-based incoherent holographic camera enabling acquisition of real-world holograms for holographic streaming system," Nat. Commun. 14, 3534 (2023).