DOI QR코드

DOI QR Code

Enhanced Fluorescence from Silk Protein with TiO2 Scatters

산화티타늄 나노 입자에 의한 실크 단백질 형광 증폭 연구

  • Rakesh Kumar Jha (Department of Electronic Engineering, Hanyang University) ;
  • Sunghwan Kim (Department of Electronic Engineering, Hanyang University)
  • Received : 2023.12.06
  • Accepted : 2023.12.26
  • Published : 2024.02.25

Abstract

We report a purely protein-based platform for green fluorescence by mixing silk protein with green fluorescence protein, and also report its enhancement by the incorporation of TiO2 nanoparticles. The TiO2 nanoparticles employed have diameters of 100 and 300 nm, with a significant increase in fluorescence (by a factor of 7.5) observed when introducing 300-nm TiO2 nanoparticles. Furthermore, an increase in particle distribution density is found to enhance fluorescence amplification. These research findings suggest that protein-based fluorescent films can be enhanced by the characteristics of nanoparticles, opening up new possibilities in the fields of optics and fluorescence applications.

실크 단백질과 녹색 형광 단백질을 결합한 순수 단백질 기반 녹색 형광체의 구현과, 산화티타늄 나노 입자에 의한 형광 증폭 현상을 보고한다. 실크 단백질은 인간에게 다양한 이점을 제공하는 소재로서, 다양한 마이크로/나노 구조 형성 가능성과 투명한 성질을 가지고 있어 광학소재로서의 활용 가능성 또한 높다. 본 연구에서 제작한 소재는 강한 녹색 형광을 띠고 있으며, 산화티타늄 나노 입자에 의해 녹색 형광이 7.5배 증폭되는 것을 확인하였다.

Keywords

Acknowledgement

농촌진흥청 농업정책지원기술개발사업(Grant no. PJ016130); 한국연구재단 기본연구(Grant no. RS-RS-2023-00245977).

References

  1. F. G. Omenetto and D. L. Kaplan, "New opportunities for an ancient material," Science 329, 528-531 (2010). https://doi.org/10.1126/science.1188936
  2. G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, "Silk-based biomaterials," Biomaterials 24, 401-416 (2003). https://doi.org/10.1016/S0142-9612(02)00353-8
  3. M. Umar, K. Min, and S. Kim, "Advances in hydrogel photonics and their applications," APL Photonics 4, 120901 (2019).
  4. C. Holland, K. Numata, J. Rnjak-Kovacina, and F. P. Seib, "The biomedical use of silk: Past, present, future," Adv. Healthc. Mater. 8, 1800465 (2019).
  5. M. Lee, H. Jeon, and S. Kim, "A highly tunable and fully biocompatible silk nanoplasmonic optical sensor," Nano Lett. 15, 3358-3363 (2015). https://doi.org/10.1021/acs.nanolett.5b00680
  6. H. Jung, K. Min, H. Jeon, and S. Kim, "Physically transient distributed feedback laser using optically activated silk bioink," Adv. Opt. Mater. 4, 1738-1743 (2016). https://doi.org/10.1002/adom.201600369
  7. M. Umar, K. Min, M. Jo, and S. Kim, "Ultra-thin, conformal, and hydratable color-absorbers using silk protein hydrogel," Opt. Mater. 80, 241-246 (2018). https://doi.org/10.1016/j.optmat.2018.04.054
  8. H. Kwon and S. Kim, "Chemically tunable, biocompatible, cost-effective metal-insulator-metal resonators using silk protein and ultrathin silver films," ACS Photonics 2, 1675-1680 (2015). https://doi.org/10.1021/acsphotonics.5b00470
  9. V. Prajzler, K. Min, S. Kim, and P. Nekvindova, "The investigation of the waveguiding properties of silk fibroin from the visible to near-infrared spectrum," Materials 11, 112 (2018).