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ON THE CLASSIFICATION OF PERIODIC WEAVES AND

UNIVERSAL COVER OF LINKS IN THICKENED SURFACES
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Abstract. A periodic weave is the lift of a particular link embedded in

a thickened surface of genus g ≥ 1 to the universal cover. Its components
are infinite unknotted simple open curves that can be partitioned in at

least two distinct sets of threads. The classification of periodic weaves
can be reduced to the one of their generating cells, namely their weav-

ing motifs. However, this classification cannot be achieved through the

classical theory of links in thickened surfaces since periodicity in the uni-
versal cover is not encoded. In this paper, we first introduce the notion of

hyperbolic periodic weaves, which generalizes our doubly periodic weaves

embedded in the Euclidean thickened plane. Then, Tait’s first and second
conjectures are extended to minimal reduced alternating weaving motifs

and proved using a generalized Kauffman bracket polynomial defined for

periodic weaving diagrams of E2 and generalized to H2. The first conjec-
ture states that any minimal alternating reduced weaving motif has the

minimum possible number of crossings, while the second one formulates

that two such oriented weaving motifs have the same writhe.

1. Introduction

A periodic weave is an entangled structure that can be described as the
lift of a particular link embedded in a thickened surface of genus g ≥ 1 to
the Euclidean or hyperbolic thickened plane, denoted by E2 × I and H2 × I
with I = [−1, 1], respectively. The topological study of doubly periodic weaves
in E2 × I was first introduced by S. A. Grishanov et al. [10] in the context
of classification of textile structures from a knot theoretical point of view. An
example of doubly periodic weave is illustrated on the left of Figure 1. Following
this approach, various topological invariants have been constructed for the
classification of doubly periodic textiles ([11], [12], [18], [15], [4]). The common
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strategy used in these studies was to reduce the classification problem of doubly
periodic structures to the one of their generating cells on the diagrammatic
level, that we call motifs. Note however that even if these motifs are defined
as link diagrams on the torus T 2, their classification differs from the classical
theory since the notion of equivalence classes is not defined similarly. For
instance, a Dehn twist of T 2, which corresponds to a change of basis in E2

equipped with a fixed point lattice or equivalently to a global isotopy (shearing)
of the doubly periodic structure, induces an equivalence relation between motifs
in addition to the usual isotopy moves for classical links [10].

To distinguish weaves from other classes of entangled structures, we pre-
viously introduced a new definition of doubly periodic weaves embedded in
E2 × I. Our definition partitions the components of a weave, called threads,
in at least two disjoint sets of threads, each being characterized by a ‘direc-
tion’ (see [8] and [9]). For comparison, knits ([15]) or braids ([16]) are defined
by curve components running along a single direction. On the diagrammatic
level, we call any generating cell of a doubly periodic weaving diagram a weav-
ing motif (see Figure 1 for an example). In particular, a weaving motif is a
link diagram whose components consist only of essential simple closed curves on
the torus, which in other words are non-self-intersecting and non-contractible
closed curves. Additionally, these curves lift to unknotted simple open curves
in E2 × I and must belong to at least two distinct sets of threads, as recalled
in Section 2.1.

Weaving motif  
DW on 𝕋2

Infinite weaving 
diagram DW0 on 𝔼2

Doubly periodic 
weave W in 𝕏3

Figure 1. A doubly periodic weave (left), its infinite dia-
gram (center), a weaving motif defined as the quotient by an
integer lattice (right)

An important remark is now needed. By considering different point lattices,
one may also obtain non-isotopic weaving motifs that represent the same pe-
riodic weave. For example in Figure 2, the blue, green and red diagrams are
weaving motifs which lift to the same periodic weave in E2 × I. As mentioned
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above, note that for a given fixed integer lattice, one can select two generat-
ing cells randomly, simply by a change of basis as illustrated in the middle of
Figure 2. These two green motifs are not considered equivalent in the sense
of the classical theory since they differ by a Dehn twist of T 2. As a notable
consequence, note that two non-isotopic torus knots lift to the same periodic
structure in E2 × I. Therefore, we should consider that the classification of
periodic weaves depends on the choice of the lattice. In this paper, we are in
particular interested in classifying periodic weaves by invariants depending on
the number of crossings. This leads to the need of introducing the notion of
minimal lattice, defined in Section 2, that generates what we should call mini-
mal motifs. Then, within an equivalence class of minimal motifs, each diagram
that achieves the minimal number of crossings, namely the crossing number,
is said to be minimum. Note that a minimum diagram is always minimal by
definition but the converse may not hold. For example, in Figure 2, the red
motif is a minimal and minimum motif for the corresponding periodic weave.
Besides, one can also consider that up to isotopy and torus twist, this red motif
is contained in the green and blue motifs. We will thus introduce the notion of
scale-equivalence, to encode that the lifts to E2 × I of different finite covers of
the same motif define the same doubly periodic weave in E2× I. These notions
lead to the statement of our Generalized Reidemeister Theorem 2.4 for doubly
periodic weave in Section 2.1, which extends the one stated in [10].

  

Figure 2. Different generating cells for the same doubly pe-
riodic biaxial alternating weave. On the left, the number of
crossings is 8 for the blue diagram. In the center, two equiv-
alent green diagrams with 4 crossings. On the right, a red
minimal diagram with 2 crossings.

In this paper, we also generalize the notion of periodic weaves to the hyper-
bolic thickened plane H2 × I by introducing the notion of hyperbolic periodic
weaves. Hence, the corresponding infinite diagrams lie on H2, which we choose
to represent by the Poincaré disk model (see Section 2.2). The definition of
weaving motifs as link diagrams on higher genus surfaces is obtained through
the quotient of a periodic infinite diagram on H2 by a discrete group generated
by translations. As for the case of doubly periodic weaves, the classical theory
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of links embedded in a thickened surface of genus g > 1, which does not encode
the periodicity in H2 × I, fails to classify hyperbolic periodic weaves. In Sec-
tion 2.2, we present a generalized Reidemeister theorem for hyperbolic periodic
weaves (Theorem 2.8), which highlight the difference with the classical theory,
since the notion of Dehn twists and scale-equivalence also extends for higher
genus surfaces and their lift in H2 × I.

In the history of knot theory, much attention has been paid to classify al-
ternating links. An alternating link is defined as a link which admits at least
one diagram whose crossings alternate between over and under as one travels
around each component [21]. In the late nineteenth century, P.G. Tait [23]
stated several famous conjectures on alternating links that remained unproven
for a century, until the discovery of the Jones polynomial. The first conjecture
classifies alternating links by their crossing number and was demonstrated in-
dependently for links in S3 by M. B. Thistlethwaite [25], K. Murasugi [19], and
L. H. Kauffman [14]. More recently, Tait’s first conjecture was generalized for
classical links embedded in thickened surfaces by T. Fleming et al. [1], [7], and
H. U. Boden et al. [3], [2]. Tait’s second conjecture for alternating links follows
from the first one and classifies oriented diagrams by their writhe. The writhe
of a link is the sum of the signs of all the crossings, where each crossing is as-
signed a sign ±1. This second conjecture was originally proven independently
by M. B. Thistlethwaite [25] and K. Murasugi [20] for the case of links in S3. It
has also been extended to classical links in a thickened surface by H. U. Boden
et al. in [3] and [2].

The notion of alternating links also appears at the level of weaves. In par-
ticular, an alternating periodic weave can be defined as a weave that admits at
least one alternating weaving motif. One can thus generalize Tait’s conjectures
to periodic weaves in E2 × I and H2 × I. The main purpose of this paper is
to prove these conjectures for alternating weaving motifs on a thickened sur-
face of genus g ≥ 1. As mentioned above, since the notion of equivalence
differs from the classical theory, these two conjectures are proved with respect
to our Generalized Reidemeister Theorems (Theorems 2.4, 2.8), which encode
the periodicity of weaves. More precisely, we will first prove the following.

Theorem 1.1 (Tait’s first conjecture for alternating weaving motifs). A mini-
mal reduced alternating weaving motif is a minimum diagram of its alternating
periodic weave.

To prove Theorem 1.1 we follow the combinatorial approach of [14] presented
for classic links in S3, where all steps are adapted for alternating periodic
weaves. Note that the original proof indeed fails for the case of periodic weaves
in E2 × I and H2 × I and the aim of this paper is to fill that gap. We do
that by first defining the notion of reduced weaving motif, which plays the role
of a reduced diagram in the original proof. Intuitively, a reduced motif can
be thought of as a diagram where no crossing can be removed, as detailed in
Definition. 2.9. Then, we use the generalized version of the bracket polynomial
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of weaving motifs embedded in T 2 defined in [12], which applies for doubly
periodic weaves in E2 × I. Besides, we also extend this bracket polynomial for
weaving motifs on surfaces of genus g > 1 so that Theorem 1.1 also applies for
alternating hyperbolic periodic weaves. We do so by capturing the essential
closed curve components of a state diagram into a 2g-uplet of integers that is
invariant under Dehn twists of the surface, as detailed in Section 3.

Finally, we also naturally consider the generalization of Tait’s second con-
jecture for periodic weaves. In particular, we will prove the following.

Theorem 1.2 (Tait’s second conjecture for weaves). Any two connected mini-
mal reduced alternating diagrams of an oriented doubly periodic weave have the
same writhe.

The proof of Theorem 1.2 follows the strategy of the one from R. Stong [22]
for classic links embedded in S3. The main difference when generalizing this
results to periodic weaves is also the consideration of the choice of periodic
lattices. In addition, one must also pay attention to the fact that the quotient
by a point lattice of a component of a periodic weave, namely a thread, which
is an unknotted open curve in the plane, can be a knotted closed curve on the
corresponding motif.

This paper is organized as follows. In Section 2, we introduce definitions of
periodic weaves and their diagrams, as well as the notions of alternating and
reduced motifs. In Section 3, we first recall necessary results on the bracket
polynomial for weaving motifs on a torus and we generalize this polynomial
to motifs on higher genus surfaces using Teichmüller theory. In Section 4,
we present the proof of the main theorem of this paper, that is Tait’s first
conjecture for weaves. Finally, in Section 5, we expose the proof of Tait’s
second conjecture for weaves, with the use of the proof of the first conjecture.

2. Periodic weaves and their corresponding links in thickened
surfaces

In this section, we first recall the definitions of doubly periodic weaves em-
bedded in the Euclidean thickened plane and their corresponding weaving mo-
tifs in the thickened torus. Then, we generalize these notions to define periodic
weaves embedded in the hyperbolic thickened plane and their corresponding
weaving motifs in higher genus surfaces. Finally, we extend the notions of
alternating and reduced link diagrams to the case of weaving motifs.

2.1. Doubly periodic weaves and links in a thickened torus

In this subsection, we recall the definition of a doubly periodic weave em-
bedded in the Euclidean thickened plane as the lift of a particular type of link
embedded in the thickened torus, that we presented in [9].

Let E2 denote the Euclidean plane, T 2 denote the torus and I = [−1, 1] be an
interval. Let also u, v be a basis of E2 such that the covering map ρ : E2 → T2
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sends u and v to the longitude l and the meridian m of T2, respectively. Note
that this covering map extends to the thickened plane by ρ̃ : E2 × I → T 2 × I.
Considering these notations, the set of points Λ(u, v) = {xu + yv/x, y ∈ Z}
generated by the basis u, v of E2 defines a point lattice of E2 isomorphic to Z2.

Let now t be an essential closed curve component of a link diagram on T 2,
such that t is homotopic to a (p, q)-torus knot. Recall that a (p, q)-torus knot
is meant an essential simple closed curve that intersects the torus meridian p
times and the torus longitude q times, as detailed in [21, Chapter 7]. Moreover,
a (p′, q′)-torus link is a link in the torus consisting of g components, each being
a (p, q)-torus knot, where p′ = g×p and q′ = g×q. Then, the lift of t under the
covering map ρ is a set of infinite open curves related by a planar translation on
E2, called threads. We say that two threads belong to the same set of threads
and are parallel if their quotient by Λ(u, v) is either the same essential closed
curve t in T 2, or a set of two essential closed curve t and t′ homotopic to the
same (p, q)-torus knot in T 2. In particular, if two components t and t′ of a link
diagram in T 2 are homotopic to the same (p, q)-torus knot, they are also said
to be parallel and to belong to the same set of threads.

Next, if t admits a self-crossing on T 2, then we are interested in distinguish-
ing the cases when this crossing vanishes on E2. In particular, if a thread has
no self-crossing on E2, we say that it is unknotted. To do so, we first introduce
the notion of ‘divided curves’ as follows. Recall that an essential closed curve
component t of a link diagram on T 2 lifts to open curves in E2. Moreover, t is
also said to be unknotted if it does not admit any self-crossing, or knotted if it
admits a finite number of self-crossings, each being a transverse double point.
Since both unknotted and knotted essential closed curves on T 2 may lift to
unknotted open curves on E2, these two cases are considered in our definition
of weaves. However, we want to exclude the case where a knotted component
on T 2 lifts to knotted threads on E2. In particular, if t is a knotted closed
curve on T 2 with a self-crossing at a point p. Then, p can divide t into two
closed curves, possibly knotted too. We refer to these two closed curves in T 2

as tp and t′p, called divided curves of t for p. In particular, it is known that if

at least one of the divided curves tp or t′p is null-homotopic on T 2, then t lifts

to knotted curves on E2. For details, we refer to [24].
Doubly periodic weaves and their weaving motifs are thus defined as follows.

For an illustration, see Figure 3.

Definition 2.1. Let W be a link embedded in T 2 × I with its corresponding
diagram DW in T 2 satisfying the following conditions, with i, j being positive
integers,

(1) each component ti of W is homotopic to a (pi, qi)-torus knot, where pi
and qi are coprime integers,

(2) each component ti of lifts to an unknotted thread under ρ̃,

(3) W contains at least two distinct non-parallel components ti and tj .
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Then, the lift of W (resp. DW ) under ρ̃ (resp. ρ) to E2 × I (resp. E2) is called
a doubly periodic weave, denoted by W∞ (resp. a doubly periodic weaving
diagram, denoted by D∞). Moreover, DW is said to be a weaving motif of D∞.

Figure 3. A weaving motif in the (thickened) torus (on the
left), and its corresponding doubly periodic weave (diagram)
in the Euclidean (thickened) plane (on the right)

Now recall that Λ(u, v) defines a periodic lattice of unit parallelograms. In
particular, each of these parallelograms can be identified with a flat torus on
which is embedded a weaving motif, considering the identification space of T 2.
In other words, a weaving motif can be defined as the quotient of a doubly peri-
odic weaving diagram D∞ by Λ(u, v). However, it is well-known that different
bases of E2 can generate equivalent point lattices. More specifically,

Λ(u, v) ≃ Λ′(u′, v′) if and only if

(
u′

v′

)
=

(
a b
c d

)
×
(
u
v

)
,

where | ad− bc |= ±1.
This implies that different weaving motifs may lift to the same doubly peri-

odic weaving diagram. It is well-known that this equivalence of point lattices
can be translated at the level of the torus. Considering linear orientation-
preserving homeomorphism of E2, namely matrices of SL(2,Z), the equivalence
of generating cells that differ by a change of basis of E2 can be translated into
Dehn twists of T 2, see Figure 4 for an illustration and [6], [10] for details. It
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Figure 4. A Dehn twist visualized on a flat torus

follows that for a fixed point lattice, the equivalence of doubly periodic weaves
can be described combinatorially by the following.

Proposition 2.2 (Generalized Reidemeister Theorem for Fixed Point Lattices
in E2 [10]). Two doubly periodic weaves in E2 × I are isotopic for equivalent
point lattices if and only if their corresponding weaving motifs can be obtained
from each other by a finite sequence of Reidemeister moves R1, R2, and R3,
torus isotopies and Dehn twists.

However, this notion of equivalence is not strong enough to capture non-
equivalent point lattices associated with weaving motifs that lift to equivalent
periodic weaving diagrams, as illustrated in Figure 2. Consider for example,

Λ(u, v) = {xu+ yv/x, y ∈ Z} and Λ′(u′, v′) = {xu′ + yv′/x, y ∈ Z}

to be two non-equivalent lattices associated to the same doubly periodic weav-
ing diagram D∞ and let ku and kv be two positive integers satisfying

u′ = ku × u and v′ = kv × v.

It follows that Λ is contained in Λ′ (Λ ⊆ Λ′). Note now that any two weaving
motifs DW = D∞ \ Λ and D′

W = D∞ \ Λ′ are not necessarily equivalent by
Proposition 2.2, although they both lift to the same periodic weaving diagram
DW,∞ in the plane. This leads to the definition of the notion of scale-equivalence
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Figure 5. On the top, the three classical Reidemeister
moves. On the bottom, a torus with a meridian and a longi-
tude curves (left), its longitudinal twist (middle) and its merid-
ional twist (right).

between weaving motifs. Note that this inclusion relation guarantees the exis-
tence of a minimal lattice, denoted by Λmin = Λ(umin, vmin), such that for any
periodic lattice Λ(u, v) of W , Λmin ⊆ Λ(u, v).

Definition 2.3. Let D∞ be a doubly periodic weaving diagram and let Λ1

and Λ2 be two non-equivalent point lattices such that Λ1 ⊂ Λ2. Moreover, let
DW1

= D∞ \ Λ1 and DW2
= D∞ \ Λ2 be two weaving motifs of D∞. Then,

DW1
and DW2

are said to be scale-equivalent if there exists a weaving motif
D′

W1
defined as adjacent copies of DW1 such that D′

W1
= D∞ \Λ2 is a weaving

motif of DW,∞ for Λ2.

From now on, we will consider equivalence of doubly periodic weaves by
including to scale-equivalence.

Theorem 2.4. Let W1 and W2 be two doubly periodic weaves with weaving
diagrams D∞,1 and D∞,2. Let also Λ1 ⊂ Λ2 be two non-equivalent point lattices
such that for i ∈ {1, 2}, DWi = D∞,i \ Λi is a weaving motif of Wi. Then, W1

and W2 are equivalent if the two following conditions are satisfied,

• DW1
and DW2

are scale-equivalent with DW1
⊂ D′

W1
and D′

W1
= D∞,1\

Λ2,
• D′

W1
and DW2

are related by a finite sequence of Reidemeister moves
R1, R2, and R3, torus isotopies and Dehn twists.

2.2. Generalization to hyperbolic weaves and diagrams on higher
genus surfaces

The study of weaving motifs on the torus encourages a generalization to
higher genus surfaces. This implies a definition of periodic weaving diagrams
on the hyperbolic plane H2. However, note that the notion of parallel direc-
tions considered to define our sets of threads in E2 cannot be extended to H2.
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We thus restrict our definition of hyperbolic weaves to the cases where their
regular projections are isotopic to quadrivalent kaleidoscopic tilings of H2. A
kaleidoscopic tiling is constructed by applying repetitively reflection symme-
tries along the sides of a given hyperbolic convex polygon (Figure 6). We will
use the Poincare disk representation of H2 and refer to [5] for more details on
hyperbolic kaleidoscopic tilings.

Figure 6. Example of kaleidoscopic tiling of the hyperbolic plane

Definition 2.5. Let P be the generating convex polygon of a quadrivalent
kaleidoscopic tiling T of H2 and let N ≥ 3 be the number of edges of P . If N
is odd, then each edge is assigned a different axis of direction. Otherwise, each
pair of opposite edges of P are given the same direction.

Remark 2.6. Since reflection symmetries preserve the axis of direction by con-
struction, the notion of sets of threads in H2 is defined in a coherent way that
generalizes the definition in E2, as shown in Figure 7.

Therefore, by specifying each vertex of hyperbolic kaleidoscopic tilings with
over or under crossing information, we introduce a new class of periodic weaves
in H2 × I. Note that most of the definitions stated in [8] may follow naturally
here. Two examples of periodic hyperbolic weaving diagrams are illustrated in
Figure 7.

It follows that a hyperbolic weaving motif can be defined as a link diagram
on a surface Sg of genus g ≥ 2. In particular, this results from the pairwise
identification of the sides of a generating cell, defined as the quotient of a
periodic weaving diagram of H2 by a discrete lattice. More precisely, a flat
weaving motif is a set of simple open arcs and crossings on a hyperbolic polygon.
Note that this polygon can be chosen in infinitely many ways, the easiest being
a regular 4g-gons of H2 (Figure 8). This leads to a generalization of the theory
of weaving motifs on a torus to motifs on higher genus surfaces. We consider
any closed orientable surface Sg of genus g ≥ 2 with generating loops α1, . . . , αg
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Figure 7. Example of hyperbolic weaving diagrams

and β1, . . . , βg. These loops define homotopy classes through a common base
point on Sg and map to a basis of H2.

Definition 2.7. Let W be a link embedded in Sg × I of genus g ≥ 2 with gen-
erating loops α1, . . . , αg and β1, . . . , βg, satisfying the two following conditions,

(1) each of its components is an essential closed curve that lifts to an
unknotted thread,

(2) its components can be partitioned into N ≥ 2 sets of threads.

Then, the lift of W under the covering map ρ′ : H2 × I → Sg × I is called a
hyperbolic periodic weave W∞ with N sets of threads. Moreover, the projection
of W onto Sg is called a (hyperbolic) weaving motif, denoted by DW , and the
lift D∞ of DW under ρ′ is called a (hyperbolic) weaving diagram.

Now, to generalize the notion of equivalent weaving motifs on the torus to
higher genus surfaces, one needs to consider the Teichmüller space of a surface
Sg of genus g ≥ 2, and its mapping class group. We refer to [6] for a complete
study of mapping class groups. First, start from any hyperbolic motif whose
flat boundary is a geodesic hyperbolic 4g-gon on H2, meaning a polygon such
that the sum of its interior angles is equal to 2π. Then, label its edges such
that they can be identified pairwise, which results in a closed marked hyperbolic
surface Sg of genus g ≥ 2, as illustrated in Figure 8. Such a polygon is called a
Sg-tile and the Teichmüller space of the corresponding surface Sg can be seen as
the space of marked surfaces homeomorphic to it. Moreover, it is well-known
that the Teichmüller space of Sg is in bijection with the set of equivalence
classes of hyperbolic Sg-tiles. Note that two Sg-tiles are said to be equivalent if
they differ by a marked, orientation-preserving isometry and by “pushing the
basepoint”, which is the point on the surface where all the vertices of a Sg-tile
meet after gluing. The details of this bijection are given in [6].

Now, to prove the existence and relation between infinitely many Sg-tiles,
we start from an arbitrary point in Teich(Sg), the Teichmüller space of Sg,



1008 S. MAHMOUDI

α  1

α  1

α  2

α  2

β  1

β  1

β  2

β  2

α  1

β
  1 α  2

β  2

Figure 8. A regular S2-tile and its corresponding marked
hyperbolic surface

which represents the equivalence class of a marked surface Sg of genus g. From
the above bijection, Teich(Sg) corresponds to the equivalence class of isometric
Sg-tiles, each corresponding to a unique point in Teich(Sg). Thus, if there
exists a non-isometric Sg-tile that can be taken as a unit cell of the same
hyperbolic weaving diagram, then it corresponds to a different marked surface
and is not isometric to the original Sg-tile. However, there exists a relation
between these different markings of Sg, characterized by its mapping class
groupMCG(Sg), whose simplest infinite-order elements are known to be Dehn
twists, as in the torus case. Indeed, given any marked surface Sg of genus g
in Teich(Sg), the marking can be changed by the action of any finite sequence
of Dehn twists, which generates non-isometric corresponding Sg-tiles. Thus,
this proves the existence of infinitely many weaving motifs for any periodic
hyperbolic weaving diagram on H2. In other words, for any given periodic
weaving diagram and a corresponding point lattice, every weaving motifs can
be obtained from an arbitrarily chosen one by a finite sequence of Dehn twists
of Sg along its generating loop, which are extensions of the meridians and
longitudes of a torus [17]. Therefore, to define equivalence class of periodic
weaves in terms of ambient isotopy in the thickened hyperbolic plane, we can
use the above arguments to encode the periodicity and the relation between all
possible unit cells for a given lattice, which generalizes Definition 2.4.

Theorem 2.8. Let W∞,1 and W∞,2 be two periodic hyperbolic weaves with
weaving diagrams D∞,1 and D∞,2 in H2 and let Λ1 ⊂ Λ2 be two non-equivalent
point lattices such that for i ∈ {1, 2}, DWi

= D∞,i \ Λi is a weaving motif
of D∞,i on Sg. Then, W∞,1 and W∞,2 are equivalent if the two following
conditions are satisfied,

• DW1
and DW2

are scale-equivalent with DW1
⊂ D′

W1
and D′

W1
=W01 \

Λ2,
• D′

W1
and DW2 are related by a finite sequence of Reidemeister moves

R1, R2, and R3, isotopies and Dehn twists of Sg.
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2.3. Some particular weaving diagrams

Many definitions from classical knot theory [14,21] can be naturally extended
for weaving diagrams. In particular, a periodic weave, or any associated weav-
ing diagram or motif, is said to be alternating if its crossings alternate cyclically
between undercrossings and overcrossings, as one travels along each of its com-
ponents (see Figure 9). However, the notion of reduced diagrams does not
follow directly from links in the thickened surfaces but takes into account the
universal cover. More specifically, we have the following.

Definition 2.9. A weaving motif DW in Sg, with g ≥ 1, is said to be reduced
if its lift to X2 = E2 or H2 does not contain a nugatory crossing. A nugatory
crossing is a crossing in the diagram so that two of the four local regions at
the crossing are part of the same region in the associated infinite diagram.

Moreover, at the level of the torus, any crossing c of a weaving motif DW

is called proper if the four regions around c delimited by the projection of the
threads are all distinct. When every crossing of DW is proper, DW is said to
be proper (see Figure 9).

A A A

A

A

A

B

B

B

B

B

A A

A A A A A A

A AA A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

B

B

B

B

B

B

B

B

B

B

B

B

B B B

BBB

(a) (b) (c)

Figure 9. A periodic reduced (without nugatory crossing)
planar diagram (a), a reduced improper weaving motif (b),
and a reduced proper weaving motif (c)

Note that an equivalent definition of reduced diagram can be stated using
the point lattice inclusion defined above.

Definition 2.10. A weaving motif DW for a fixed point lattice Λ is said to be
reduced if one of the two following conditions is satisfied,

• all its crossings are proper,
• for each improper crossing c, there exists a point lattice Λ′ such that
Λ ⊂ Λ′ and for which c is proper in D′

W , where D′
W is the weaving

motif constructed by gluing a copy of DW to each of its boundary sides
by translation.

Remark 2.11. Recently, in [3], a different definition of reduced diagram for
classic links on a thickened surface has been stated and could also apply here.
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3. The bracket polynomial of periodic weaves

3.1. A Kauffman-type weaving invariant

This section recalls results from [12] and [10], and extends the definition of
the bracket polynomial of a weaving motif on a torus to any surface Sg of genus
g ≥ 1.

Definition 3.1. Let DW be a weaving motif on a surface Sg of genus g ≥ 1,
and let ⟨DW ⟩ be the element of the ring Z[A,B, d] defined recursively by the
following identities,

(1) ⟨O⟩ = 1, with O a null-homotopic simple closed curve on DW .
(2) ⟨DW ∪ O⟩ = d⟨DW ⟩, when adding an isolated circle O to a diagram

DW .
(3) ⟨ ⟩ = A⟨ ⟩+ B⟨ ⟩, for diagrams that differ locally around a

single crossing.

This last relation is called the skein relation and ⟨DW ⟩ denotes the bracket
polynomial.

This polynomial is known to be well defined on classic link diagrams and can
be generalized to periodic weaves. Let DW be any weaving motif of a periodic
weave of X2 = E2 or H2. Then, every crossing of DW can be smoothed via an
operation of type A or B, as illustrated in Figure 10. The overall operations
can be expressed as a state S of DW , defined as a sequence of symbols A and
B of length C, where C is the number of crossings of DW ,

S = ABAABB · · ·ABBA.

1

2

3
4

5
6

AABBBB

Figure 10. On the left, the two types of splitting. On the
right, an example of a state S = AABBBB of a weaving motif.

It is well-known for links in S3 that a diagram DS in a state S is a dis-
joint union of cS null-homotopic simple closed curves. It follows from Defini-
tion 3.1(2) that,

⟨DS⟩ = d cS−1 .

Moreover, if i is the number of splits of type A and j the number of splits of
type B, then the total contribution of the state S to the bracket polynomial is
given by applying the skein relation recursively,

PS = ⟨DS/S⟩⟨DS⟩ = AiB jd cS−1 .
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However, recall that a state of a weaving motif DW may contain essential
simple closed curves, as in the case of any link diagram on a surface Sg of
genus g ≥ 1. Such a set is called a winding in [12] and is denoted by (m,n)S
for g = 1, where m and n are the number of intersections of the winding with
a torus meridian and longitude, respectively. For example, in the case of the
state diagram of Figure 10 (right), (AABBBB), we have (m,n)S = (0, 2)S .

For the general case of g ≥ 1, a winding is denoted by,

(m1, . . . ,mg, n1, . . . , ng)S ,

where m1, . . . ,mg, n1, . . . , ng are the number of intersections of the winding
with the generating loops α1, . . . , αg, β1, . . . , βg of the surface Sg respectively,
see Figure 8 and [17] for more details.

Recall that by definition, windings also encode the periodicity of weaves in
the universal cover, which is not considered for classic links in a thickened sur-
face, as in [1–3,7]. We can thus generalize the value of the bracket polynomial
of a winding defined for g = 1 in [12], with respect to Definition 3.1,

⟨(m1, . . . ,mg, n1, . . . , ng)S⟩ = (m1, . . . ,mg, n1, . . . , ng)S , for every g ≥ 1.

Therefore, following the above reasoning, the bracket polynomial of a weav-
ing motif is well-defined.

Proposition 3.2. The bracket polynomial ⟨DW ⟩ of a weaving motif DW on a
surface Sg of genus g ≥ 1 is uniquely determined by the identities (1), (2), (3)
of Definition 3.1, and is expressed by summation over all states of the diagram,

(3.1) ⟨DW ⟩ =
∑
S

AiB jd cS (m1, . . . ,mg, n1, . . . , ng)S .

As for links in S3, the bracket polynomial of a weaving motif is proven to be
invariant under the Reidemeister moves following the same approach of Lemma
2.3 in [14].

Lemma 3.3. If the three diagrams represent the same weaving motif except in
the area indicated, we have ⟨ ⟩ = AB⟨ ⟩ + (ABd+A2 +B2)⟨ ⟩.

Thus, the bracket is invariant for the Reidemeister move R2 for all diagrams
if

AB = 1 and d = −A2 −A−2.

Moreover, this implies also the invariance of the bracket for the Reidemeister
move R3, which concludes the invariance by regular isotopy.

Lemma 3.4. The bracket invariance for the Reidemeister move R2 implies the
bracket invariance for the Reidemeister move R3. Thus, the bracket polynomial
is an invariant of regular isotopy for periodic weaves for a fixed point lattice.

Finally, to prove the invariance under the Reidemeister move R1, we use the
following proposition that provides an identity for R1, as in [14].
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Proposition 3.5. If AB = 1 and d = −A2 − A−2, then for the Reidemeister
move R1, we have  ⟨ ⟩ = (−A3)⟨ ⟩,

⟨ ⟩ = (−A−3)⟨ ⟩.

The strategy is to use the writhe wr(DW ) of a weaving motif DW , which is
the sum of the signs of all the crossings, where each crossing is given a sign ±1,
as in Figure 11.

+1 -1

Figure 11. Sign convention

Any weaving motif DW consists of T essential closed curve components, each
denoted by ti, that can be oriented in an arbitrary way. We call Di

W the part
of the diagram DW that corresponds to the component ti. Then we have in
DW ,

(3.2) wr(DW ) =

T∑
i=1

wr(D
i
W ).

We can now define a polynomial constructed from the bracket. For every
g ≥ 1, we set
(3.3)

f(DW ) = (−A)−3wr(DW )⟨DW ⟩,

= (−A)−3wr(DW )
(∑

S

Ai−j(−A2 −A−2)cS (m1, . . . ,mg, n1, . . . , ng)S

)
.

Theorem 3.6. The polynomial f(DW ) ∈ Z[A] defined above is an ambient
isotopic invariant for oriented perioding weaves under a fixed point lattice.

Proof. From Lemma 3.4, we already have the invariance of f(DW ) for the
Reidemeister moves R2 and R3. Then, by combining the behavior of the writhe
defined above under the Reidemeister move R1 with the previous relation of the
bracket for R1 in Proposition 3.5, it follows that f(DW ) is invariant under R1

type moves. Thus, f(DW ) is invariant under all three moves, and is therefore
an invariant of ambient isotopy for the chosen lattice. 2
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Nevertheless, this polynomial still depends on the choice of the unit cell for
the chosen point lattice, since the multipliers (m1, . . . ,mg, n1, . . . , ng)S describ-
ing the windings depend on the Dehn twists of the surface Sg. As seen earlier,
to have a weaving invariant for a fixed lattice, we also need the invariance of
the polynomial under Dehn twists of Sg. Once again, the particular case of the
torus is described in [12] and is generalized below to g ≥ 1.

Theorem 3.7. The polynomial f(DW ), when (m1, . . . ,mg, n1, . . . , ng)S is in
a canonical form for each state S, defines a Kauffman-type weaving invariant
for a fixed point lattice.

Proof. To construct an invariant independent of the Dehn twists of Sg, a possi-
bility is to define a canonical form for the set {vS}= {(m1, . . . ,mg, n1, . . . , ng)S}
of windings for every state S. Indeed, since this set {vS} depends on the
twists of Sg, one must transform it into the canonical form to make it invari-
ant. The Dehn-Lickorish Theorem states that it is sufficient to select a finite
number of Dehn twists to generate the mapping class group MCG(Sg) of a
surface Sg of genus g. Moreover, since the map ψ : MCG(Sg) → Sp(2g,Z)
is surjective for g ≥ 1, it follows that the images of the Dehn twists gen-
erate Sp(2g,Z) ([6]). Besides, recall that the determinant of every matrix
U ∈ Sp(2g,Z) is equal to 1 and that for g = 1, Sp(2g,Z) = SL2(Z). Thus,
following the strategy used in [12], one can represent the transformation of a
winding vS = ((m1, . . . ,mg, n1, . . . , ng)S by a sequence of Dehn twists of Sg as
a product of vS by a matrix U ∈ Sp(2g,Z),

v′S = vS .U,

considering the canonical matrix multiplication on Sp(2g,Z).
To define the canonical form of a set V = {vS}, we associate a quadratic

functional Q,

(3.4) Q(V ) :=

N∑
S

|vS |2.

Thus, a finite sequence of Dehn twists, given by a matrix U , converts the set
of windings V = {vS} to a set V ′ = {v′S}, with v′S = vS .U and the value of Q
becomes,

(3.5) Q(V ′) =

N∑
s

|v′S |2 =

N∑
S

vS .U.U
T .vTS .

Then, to construct a canonical form of the windings V = {vS}, the idea is to
find a finite sequence of Dehn twists encoded in U that minimizes the value of
Q ([12]),

(3.6) Q(V ′) =

N∑
S

|v′S |2 =

N∑
S

vS .U.U
T .vTS −→ min, U ∈ Sp(2g,Z).
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This equation always has a unique non-trivial solution U0. Indeed, let M =
U.UT be a symmetric definite positive matrix. Then, if x = vS and ϕ(x) =
x.M.xT , then ϕ(0) = 0 and for all x ̸= 0, ϕ(x) > 0. Thus, there exists
an orthonormal basis {e1, . . . , ed} such that for all i in {1, . . . , d}, ei is an
eigenvector of M . We denote the corresponding eigenvalue λi and we show
that ϕ is strictly convex.

Let 0 < µ < 1 and consider ϕ
(
µx+ (1− µ)y

)
, with x ̸= y. Then,

(3.7)

ϕ
(
µx+ (1− µ)y

)
= ⟨µx+ (1− µ)y,M(µx+ (1− µ)y)⟩,

= ⟨
d∑

i=1

µxiei + (1− µ)yiei,M

d∑
i=1

µxiei + (1− µ)yiei⟩,

=

d∑
i=1

λi
(
µxi + (1− µ)yi

)2
.

Moreover, x2 is strictly convex and for some i, xi ̸= yi, thus,

(3.8)

d∑
i=1

λi
(
µxi + (1− µ)yi

)2
<

d∑
i=1

λi
(
µx2i + (1− µ)y2i

)
.

Therefore, since ϕ is strictly convex and has a limit at infinity, it has a unique
minimum, which concludes our proof. So, for every state S, the canonical
form of a set of windings V = {vS}, with the winding as coordinates vS =
(m1, . . . ,mg, n1, . . . , ng)S is an invariant and thus, f(DW ) too. 2

3.2. The case of alternating weaving diagrams

Now, we study the bracket polynomial for the case of alternating weaves. It is
well-known that the degree of a polynomial is the most important aspect of the
polynomial as an invariant [20]. The following proposition and its proof follow
the strategy of the similar result for classic links in S3, but depend strongly on
the definition of reduced and proper diagrams stated in Section 2.3.

Proposition 3.8. Let DW be an alternating reduced weaving motif colored so
that all the regions labeled A are white and all the regions labeled B are black.
Let C be the number of crossings, W be the number of white regions and B be
the number of black ones. Then,

(3.9)
max deg(⟨DW ⟩) = C + 2W,

min deg(⟨DW ⟩) = −C − 2B,

with maxdeg(P ) and min deg(P ) are respectively the maximal and the minimal
degree of any polynomial P in Z[A,B, d].

Proof. Since DW is alternating, it admits a canonical checkerboard coloring by
definition, which means that two edge-adjacent regions always have different
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colors. Let S = SA be the state obtained by splitting every crossing in the
diagram DW in the A-direction. Then we have ⟨DW /S⟩ = AC , and since
the number of components cS is equal to W , thus as seen earlier, the total
contribution of the state S to the bracket polynomial is given by,

(3.10)
PS = ⟨DW /S⟩d cS (m1, . . . ,mg, n1, . . . , ng)S

= ACdW (m1, . . . ,mg, n1, . . . , ng)S , g ≥ 1.

And since d = −A2 −A−2, then max deg(PS) = C + 2W , which is the desired
relation.

Now let S′ ̸= SA be any other state and verify that deg(PS′) ≱ deg(PS).
Then S′ can be obtained from S = SA by switching some splittings of S. A
sequence of states can be defined by S(0), S(1), . . . , S(n) such that S = S(0),
S′ = S(1). Thus, for every positive integer i, S(i+1) is obtained from S(i) by
switching one splitting from type A to type B, which then contributes a factor
of A−1 in the polynomial

(3.11) ⟨DW /S(i+ 1)⟩ = A−2⟨DW /S(i)⟩.

We now need to distinguish two cases.
Case 1. The weaving motif DW is reduced and proper for the fixed point

lattice. Then, cS(i+1) ≤ cS(i) − 1, since switching one splitting can change the
component number by at most one. Thus, max deg(PS(i+1)) ≤ maxdeg(PS(i)).
Moreover, let c be the crossing point for which we change the A-splice into the
B-splice from S(0) to S(1). Since DW is proper, the crossing c is proper. Thus,
we can use the following lemma, (Lemma 3.2 in [13]).

Lemma 3.9. Let DW be an alternating weaving motif and let SA (resp. SB)
be the state of DW obtained from DW by doing an A-splice (resp. B-splice)
for every crossing. For a crossing c of DW , let R1(c) and R2(c) be the closed
regions of SA (or R′

1(c) and R′
2(c) be the closed regions of SB) around c. If c

is a proper crossing, then

R1(c) ̸= R2(c) and R
′
1(c) ̸= R′

2(c).

Proof. Since c is a proper crossing, the four closed regions of DW appearing
around c are all distinct. Moreover, since DW is alternating, it has a canonical
checkerboard coloring and there is a one-to-one correspondence,{

the closed regions of SA

}
∪
{
the closed regions of SB

}
→

{
the closed regions of DW

}(3.12)

Then R1(c), R2(c), R
′
1(c) and R

′
2(c) correspond to the four distinct closed re-

gions of DW around c. This concludes the proof. 2

Thus, from this lemma, since S(1) is obtained from S(0) by changing an A-
splice to a B-splice at c, two distinct regions R1(c) and R2(c) become a single
region. Hence cS(1) = cS − 1. To conclude, the term of maximal degree in



1016 S. MAHMOUDI

the entire bracket polynomial is contributed by the state S = SA, and is not
canceled by terms from any other state, so we arrive at

max deg(⟨DW ⟩) = C + 2W.

The proof is similar for

min deg(⟨DW ⟩) = −C − 2B.

Case 2. The weaving motif is reduced but not proper for the fixed lattice.
Then, there exists at least one crossing which is not proper. If we change an
A-splice to a B-splice at a crossing c that is proper, then the conclusion is the
same as before. Now, if we change an A-splice to a B-splice at a crossing c′ that
is not proper, then some white regions would touch both sides of a crossing. In
this case, the number of split components does not decrease from S(0) to S(1),
cS(1) = cS(0). But, as seen before, ⟨DW /S(1)⟩ = A−2⟨DW /S(0)⟩ and there is
no isthmus in the diagram, so the number of components either decreases or is
constant. Therefore,

(3.13) max deg(PS(1)) ≤ maxdeg(PS(0)).

Thus, once again, the term of maximal degree in the entire bracket polynomial
is contributed by the state S = SA, and is not canceled by terms from any
other state and therefore,

max deg(⟨DW ⟩) = C + 2W.

The proof is similar for

min deg(⟨DW ⟩) = −C − 2B. 2

Now, it is possible to define a relation between the closed regions of DW

and the regions of the diagram after splitting as done in Section 3 of [13]. Let
SA (resp. SB) be again the state obtained by splitting every crossing in the
diagram in the A (resp. B)-direction, and DW be colored so that all the regions
labeled A are white (gray on Figure 12) and all the regions labeled B are black.

A A A

A

A

A

B

B

B

B

B

Figure 12. Example of DW (left), SA = A · · ·A (middle)
and SB = B · · ·B (right)

Therefore, we have the following correspondences,{
the closed regions ofSA

}
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−→
{
the closed regions of DW in black regions B

}
,{

the closed regions ofSB

}
−→

{
the closed regions of DW in white regions W

}
,

which leads to the following bijection,{
the closed regions ofSA

}
∪

{
the closed regions of SB

}
−→

{
the closed regions of DW

}
.

And when considering a diagram on a surface of genus g ≥ 1, using the Euler
characteristic and the fact that such a diagram is quadrivalent, we conclude
that,

the number of closed regions of DW is equal to C + 2− 2g, for every g ≥ 1.

It is now possible to extend the proof of Theorem 2.10 in [14] to reduced
alternating weaving motifs of X2 = E2 or H2 defined for a fixed integer lattice.

Theorem 3.10. Let W∞ be an alternating periodic weave in the thickened
plane X2 × I, where X2 = E2 or H2. Then, the number of crossings C in an
alternating weaving motif DW is a topological invariant of its corresponding pe-
riodic weaveW∞ for a fixed point lattice. Therefore any two reduced alternating
weaving motifs of a given periodic weave quotient by the same point lattice have
the same number of crossings.

Proof. Let span(DW ) defined by

span(DW ) = maxdeg(⟨DW ⟩)−min deg(⟨DW ⟩).

Then we have, span(DW ) = 2C + 2(W +B) = 2C + 2(C + 2− 2g). So finally,
span(DW ) = 4C − 4g + 4, for every g ≥ 1. 2

Remark 3.11. Note that Theorem 3.10 implies that the number of crossings on
a generating cell of a periodic weave is a topological invariant for a given point
lattice. However, it does not allow a comparison of scale-equivalent weaving
motifs, which is an important point to remember for the classification of pe-
riodic weaves in a thickened plane since the number of crossing in a unit cell
describes the complexity of the structure.

4. The Jones polynomial and Tait’s first conjecture for weaves

4.1. The Jones polynomial of a periodic weave

The Jones polynomial is defined by the following identities in Section 2 of
[14],

• JO = 1,
• t−1 J − t J = (

√
t− 1√

t
) J .
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And it is related to the weaving invariant defined above by the following
relation,

Theorem 4.1. The Jones polynomial JW of a weaving motif DW is related
to its bracket-type polynomial, for every g ≥ 1, by the expression, JW (t) =
f(DW )(t−1/4)

JW (t) = (−1)−3wr(DW )t−(1/4)−3wr(DW )

×
(∑

S

t i−j(−t 2 − t−2)cS (m1, . . . ,mg, n1, . . . , ng)S

)
.

Proof. By the skein relation:{
⟨ ⟩ = A⟨ ⟩+A−1⟨ ⟩,
⟨ ⟩ = A−1⟨ ⟩+A⟨ ⟩.

Thus, we have A⟨ ⟩ −A−1⟨ ⟩ = (A2 −A−2)⟨ ⟩.
If we consider the writhe wr(DW ) of the weaving motif in the bracket on

the right side of the equation, then the other two diagrams on the left have
writhes (wr(DW ) + 1) and (wr(DW ) − 1), respectively. Thus, by multiplying
the previous equation by the appropriate writhe, we obtain

A4f( )−A−4f( ) = (A−2 −A2)f( ). 2

4.2. Tait’s first conjecture for periodic weaves

Before stating the main result of this paper, it is necessary to give a last
essential definition, that is particular to the case of weaving motifs of infinite
periodic weaving structures.

Definition 4.2. The crossing number C(W∞) of a periodic weave W∞ with
weaving diagram D∞ is defined as the minimum number of crossings that can
be found among all possible weaving motifs that lift to W∞. In other words,
for a minimal point lattice Λmin,

C(W∞) = min
{
C(DW ), DW =W0 \ Λmin

}
.

Any weaving motif of W∞ which has exactly C (W∞) crossings is said to be a
minimum motif.

It is important to recall at this point that any weaving motif DW must
encode the alternating property and the periodicity of its corresponding weave
W∞. Moreover, as seen earlier, a minimal diagram of a weave is not unique by
construction and it is necessary to identify the minimal point lattice to apply
Tait’s first and second conjectures to weaving structures.

Theorem 4.3 (Tait’s first conjecture for periodic alternating weaves). A min-
imal reduced alternating weaving motif on a surface Sg of genus g ≥ 1 is a
minimum diagram of its alternating periodic weave in X2 × I, where X2 = E2

or H2.
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Proof. Since JW (t) = f(DW )(t−1/4) and span(DW ) = 4C − 4g + 4, for every
g ≥ 1, thus,

(4.1)
span

(
JW (t)

)
= maxdeg

(
JW (t)

)
−min deg

(
JW (t)

)
.

= C − g − 1.

And the number of crossings is an invariant thus, it is fixed here for a minimal
reduced alternating weaving motif. Moreover, we have a generalization of the
previous result for the general case, not necessary alternating, that can be
proven in a similar way than in the proof of the generalization of Proposition
2.9 in [14],

(4.2) span(DW ) ≤ 4C − 4g + 4, for every g ≥ 1.

Thus, the number of crossing points cannot decrease below span
(
JW (t)

)
. We

conclude that DW must be a minimum diagram. 2

5. Tait’s second conjecture for periodic weaves

In this last section, we generalize Tait’s second conjecture to periodic al-
ternating weaves in the thickened Euclidean or hyperbolic plane. This result
concerns the invariance of the writhe for minimal reduced alternating weaving
motifs on a surface Sg of genus g ≥ 1. The strategy follows the proof of this
same conjecture for classic links in S3 from [22], with a special attention to the
fact that the components of a weave are unknotted simple open curves. We
will thus only consider the particular case of self-crossing of a thread, defined
as a finite sequence of Reidemeister moves R1.

5.1. Writhe, linking number and adequacy of weaving diagrams

In the proof of Theorem. 3.6, we have seen that the writhe is not invariant un-
der Reidemeister moves of type R1, which only concerns cases of self-crossings
in a same thread, as defined above. Therefore, we can start to study crossings
between two distinct components of a weaving motif.

Definition 5.1. Let DW be a weaving motif of an oriented periodic weave
W∞ for a fixed point lattice Λ. Let ti and tj be two arbitrary threads of W∞
and denote by Di

W and Dj
W their image on DW under the covering map for Λ.

The linking number of Di
W and Dj

W , denoted lk(Di
W , Dj

W ), is the sum taken

over crossings between Di
W and Dj

W , where each crossing is assigned a symbol
±1 according to the convention of Figure 11.

It is important to specify that the linking number is defined for pairs of
threads in a weave. We will now prove that the linking number is a weaving
invariant for a fixed point lattice.

Proposition 5.2. Let DW1
and DW2

be two weaving motifs defined as the
quotient of an oriented periodic weave W∞ by a fixed point lattice Λ, which
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differ by a Reidemeister move R2, or R3. Then, with the same notation as
before, we have,

lk(Di
W1
, Dj

W1
) = lk(Di

W2
, Dj

W2
).

As for classic links, this proof is immediate from the invariance of the writhe
under Reidemeister moves of type R2 and R3. Besides, isotopies and Dehn
twists on the surface Sg will clearly not affect the linking number by definition.
Therefore, due to the above considerations, the linking number is an invariant
of regular isotopy and it is thus possible to extend its definition to a thickened
surface and to its universal cover for a fixed lattice.

Definition 5.3. Let DW be a weaving motif of an oriented periodic weave
W∞ for a fixed point lattice Λ. With the same notation as above, for any two
threads ti and tj of W∞, the linking number is defined by,

lk(ti, tj) := lk(Di
W , Dj

W )Λ.

Then, we can also apply the notion of adequacy of a weaving motif using
once again the notion of states described in Section 3.1 and by following the
definition of an adequate link diagram on a surface from [3].

Definition 5.4. Let DW be a weaving motif of an oriented periodic weaveW∞
for a fixed point lattice. Let SA denote the state of DW in which all crossings
are A-smoothed, and SB the state in which all crossings are B-smoothed. For
any state S of DW , cS denote the number of null-homotopic components and
tS the number of components of the winding, if any. If for all states S adjacent
to SA, we have cSA

≥ cS or tSA
̸= tS , then DW is said to be A-adequate. If,

for all states S adjacent to SB , we have cSB
≥ cS or tSB

̸= tS , then DW is said
to be B-adequate. If DW is both A-adequate and B-adequate, then DW is said
to be adequate.

There exists a method to verify if a weaving motif DW is A-adequate, that
refers to the proof of Proposition. 3.8 and to [22]. Considering the state SA of
DW , we arbitrarily choose a crossing that we switch from an A-smoothing to
a B-smoothing. Such an operation will either decrease or preserve the number
of components as detailed in [3], unless the chosen crossing was a (positive)
self-crossing since it would split a curve into two. Thus, if each component
of SA never forms a (positive) self-crossing at a former crossing of DW , then
it is A-adequate. In a similar way, if each component of SB never forms a
(negative) self-crossing at a former crossing of DW , then it is B-adequate. We
can deduct immediately from this observation that a reduced weaving motif
is always adequate by definition, since it never contains any self-crossing by
definition.

One of the key points in the proof of Tait’s second conjecture for links in
S3 by R. Stong ([22]) was to use the notion of parallels of diagrams and study
their adequacy. This strategy has also been used to prove Tait’s conjectures
for links in thickened surfaces in [3].
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Definition 5.5. Let DW be a weaving motif of an oriented periodic weave
W∞ and let r be a positive integer. The r-parallel of DW , denoted (DW )r, is a
weaving motif in which each component of DW is replaced by r parallel copies
that follow the same crossing information as the original component.

Lemma 5.6. Let DW be a weaving motif of an oriented periodic weave W∞
and (DW )r, the r-parallel of DW . If DW is A-adequate (resp. B-adequate),
then (DW )r is A-adequate (resp. B-adequate).

The proof is immediate following [3] by observing that the state S′
A of (DW )r

consist of r parallel copies of each curve of the state SA of DW . So if each
component of SA never form a self-crossing at a former crossing of DW , then
we have the same conclusion for S′

A.

5.2. Relation between the number of crossings and the writhe

In this section, a generalization of Proposition. 3.8 gives us the following
lemma about the degree of the bracket polynomial.

Lemma 5.7. Let maxdeg(⟨DW ⟩ and min deg(⟨DW ⟩) be respectively the max-
imal and the minimal degree of the bracket polynomial ⟨DW ⟩ of a given weav-
ing motif DW . Let SA denote the state of DW in which all crossings are
A-smoothed, and let SB denote the state of DW in which all crossings are
B-smoothed. Let C be the number of crossings in DW . Then,

(5.1)
max deg(⟨DW ⟩) ≤ C + 2cSA

, with equality if DW is A-adequate,

min deg(⟨DW ⟩) ≥ −C − 2cSB
, with equality if DW is B-adequate.

Moreover, we can also state the following key lemma which brings together
the number of crossings in an A-adequate weaving motif and its writhe, while
also connecting the linking numbers to the r-parallels.

Lemma 5.8. Let DW1 and DW2 be two weaving motifs defined as the quotient
of an oriented periodic weave W∞ by a fixed point lattice Λ, with C1 and C2

crossings, respectively. Suppose that DW1
is A-adequate. Let wr(DW1

) and
wr(DW2

) denote the writhes of DW1
and DW2

, respectively. Then,

C1 − wr(DW1) ≤ C2 − wr(DW2).

Proof. We start by indexing each of the components of DW such that a thread
ti ofW∞ is mapped to the curves Di

W1
and Di

W2
in DW1 and DW2 respectively.

Since DW1
is plus-adequate, it does not admit any self-crossing by definition.

However, DW2
can contain finitely many self-crossings with sign ±1. Never-

theless, it is always possible to choose an integer ki that cancels the writhe of
the component Di

W2
containing self-crossings. In other words, by performing

appropriate Reidemeister moves of type R1, one can add ki twists of type +1 if
the original writhe of Di

W2
is negative, or of type −1 if it is positive. Therefore,

for all integer i, we have,

wr(D
i
W1

) = wr(D
i
W2

) + ki = 0.
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By performing these moves to Di
W2

, we created
∑

i≥1 ki self-crossings to

DW2
. This new diagram is denoted by D′

W2
. Now to compare wr(D

′
W1

) with
wr(D

′
W2

), one needs also to consider the crossings which involve distinct com-
ponents, and thus their linking numbers. Therefore, we have,

(5.2)

wr(DW1
) =

∑
i≥j

lk(ti, tj)Λ

wr(D
′
W2

) =
∑
i≥1

wr(D
i
W2

) +
∑
i≥1

ki +
∑
i≥j

lk(ti, tj)Λ

=
∑
i≥j

lk(ti, tj)Λ

Indeed, since the linking numbers are invariant for a fixed lattice, we obviously
have wr(DW1

) = wr(D
′
W2

).
We now consider the r-parallel (DW1

)r and (D′
W2

)r. They are both con-
structed from equivalent weaving motifs for the same point lattice by adding
r − 1 parallel components. Therefore, they are equivalent by definition and
have the same bracket polynomial. Moreover, since every crossing of DW1 and
D′

W2
corresponds to r2 crossings of (DW1

)r and (D′
W2

)r, we see that

wr((DW1
)r) = r2wr(DW1

) = r2wr(D
′
W2

) = wr((D
′
W2

)r).

By the definition of the bracket polynomial, it follows that,

⟨(D′
W1

)r⟩ = ⟨(D′
W2

)r⟩.

Let cS1
A

(resp. cS2
A
) denote the number of null-homotopic components in

the state SA of DW1 (resp. DW2). Adding self-crossings to DW2 means that
the number of connected components in the state SA of D′

W2
becomes cS2

A
+∑

i≥1 ki. Then, when we pass to the r-parallels, we find that the number of

connected components in the state SA of (DW1)
r and (D′

W2
)r becomes r(cS1

A
)

and r(cS2
A
+
∑

i≥1 ki), respectively.

Moreover, adding self-crossings in DW2 means that we increase the num-
ber of crossings in D′

W2
, which becomes C2 +

∑
i≥1 ki. Furthermore, making

r−parallels means that the number of crossings in (DW1
)r and (D′

W2
)r becomes

r2C1 and r2(C2 +
∑

i≥1 ki), respectively. Since DW1
is A-adequate, we have

that (DW1)
r is also A-adequate by Lemma 5.6. Thus, from Lemma 5.7, we

conclude that,

max deg(⟨(D′
W1

)r⟩) = r2C1 + 2rcS1
A

and,

max deg(⟨(D′
W2

)r⟩) = r2(C2 +
∑
i≥1

ki) + 2r(cS2
A
+
∑
i≥1

ki).
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Since ⟨(DW1
)r⟩ = ⟨(D′

W2
)r⟩, then max deg(⟨(DW1

)r⟩) = maxdeg(⟨(D′
W2

)r⟩),
and thus, for all positive integers r, we have

r C1 + 2cS1
A
≤ r(C2 +

∑
i≥1

ki)(cS2
A
+
∑
i≥1

ki).

Therefore,

C1 ≤ C2 +
∑
i≥1

ki.

And since for all positive integers i, we have wr(D
i
W2

) + ki = 0, then,

C1 ≤ C2 −
∑
i≥1

wr(D
i
W2

).

Again, since the linking number is an invariant, we have

lk(Di
W1
, Dj

W1
) = lk(Di

W2
, Dj

W2
).

So as desired, we finally have that

C1 − wr(DW1
) ≤ C2 − wr(DW2

),

from (5.2). 2

5.3. Tait’s second conjecture

We end this paper with the statement and proof of the Tait’s second con-
jecture for periodic weaves as follows.

Theorem 5.9 (Tait’s second conjecture for weaves). Any two minimal reduced
alternating weaving motifs of an oriented periodic alternating weave have the
same writhe.

Proof. Let DW1 and DW2 be two minimal reduced alternating weaving motifs
of the same oriented periodic weave W∞, which are therefore also adequate.
Let C1 and C2 denote the number of crossings in DW1

and DW2
, respectively.

Then, by the previous lemma, we have C1 − wr(DW1
) ≤ C2 − wr(DW2

), and
C2 − wr(DW2

) ≤ C1 − wr(DW1
), and thus, C1 − wr(DW1

) = C2 − wr(DW2
).

Moreover, such particular weaving diagrams have the same crossing number
from Tait’s first conjecture, C1 = C2, and therefore, wr(DW1) = wr(DW2).
This finally proves Tait’s second conjecture for periodic alternating weaves. 2
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