References
- J. F. Adams, On the structure and applications of the Steenrod algebra, Comment. Math. Helv. 32 (1958), 180–214. https://doi.org/10.1007/BF02564578
- J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20–104. https://doi.org/10.2307/1970147
- J. M. Boardman, Modular representations on the homology of powers of real projective space, Algebraic Topology (Oaxtepec, 1991), 49–70, Contemp. Math., 146, Amer. Math. Soc., Providence, RI, 1993. https://doi.org/10.1090/conm/146/012151288 Đ. V. PHÚ
- W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. https://doi.org/10.1006/jsco.1996.0125
- T.-W. Chen, Determination of ExtA5,∗ (ℤ/2, ℤ/2), Topology Appl. 158 (2011), no. 5, 660–689. https://doi.org/10.1016/j.topol.2011.01.002
- T.-W. Chen, The structure of decomposable elements in ExtA6,∗ (ℤ/2, ℤ/2), Preprint (2012), 35 pages.
- P. H. Cho'n and L. M. Hà, On May spectral sequence and the algebraic transfer, Proc. Japan Acad. Ser. A Math. Sci. 86 (2010), no. 9, 159–164. https://doi.org/10.3792/pjaa.86.159
- P. H. Cho'n and L. M. Hà, Lambda algebra and the Singer transfer, C. R. Math. Acad. Sci. Paris 349 (2011), no. 1–2, 21–23. https://doi.org/10.1016/j.crma.2010.11.008
- P. H. Cho'n and L. M. Hà, On the May spectral sequence and the algebraic transfer II, Topology Appl. 178 (2014), 372–383. https://doi.org/10.1016/j.topol.2014.10.013
- E. B. Curtis, The Dyer-Lashof algebra and the Λ-algebra, Illinois J. Math. 19 (1975), 231–246. http://projecteuclid.org/euclid.ijm/1256050812 https://doi.org/10.1215/ijm/1256050812
- L. M. Hà, Sub-Hopf algebras of the Steenrod algebra and the Singer transfer, Proceedings of the School and Conference in Algebraic Topology, 81–105, Geom. Topol. Monogr., 11, Geom. Topol. Publ., Coventry, 2007.
- N. H. V. Hưng, The weak conjecture on spherical classes, Math. Z. 231 (1999), no. 4, 727–743. https://doi.org/10.1007/PL00004750
- N. H. V. Hưng, The cohomology of the Steenrod algebra and representations of the general linear groups, Trans. Amer. Math. Soc. 357 (2005), no. 10, 4065–4089. https://doi.org/10.1090/S0002-9947-05-03889-4
- N. H. V. Hưng and G. Powell, The A-decomposability of the Singer construction, J. Algebra 517 (2019), 186–206. https://doi.org/10.1016/j.jalgebra.2018.09.030
- M. Kameko, Products of Projective Spaces as Steenrod Modules, ProQuest LLC, Ann Arbor, MI, 1990.
- J. Lannes and S. Zarati, Sur les foncteurs dérivés de la déstabilisation, Math. Z. 194 (1987), no. 1, 25–59. https://doi.org/10.1007/BF01168004
- W. Lin, Charts of the Cohomology of the Mod 2 Steenrod Algebra, Preprint (2023), 2276 pages. https://doi.org/10.5281/zenodo.7786290
- H. N. Ly and N. K. Tin, The admissible monomial basis for the polynomial algebra of five variables in degree fourteen, South East Asian J. Math. Math. Sci. 16 (2020), no. 3, 27–38.
- M. Moetele and M. F. Mothebe, The admissible monomial basis for the polynomial algebra in degree thirteen, East-West J. Math. 18 (2016), no. 2, 151–170.
- K. G. Monks, Polynomial modules over the Steenrod algebra and conjugation in the Milnor basis, Proc. Amer. Math. Soc. 122 (1994), no. 2, 625–634. https://doi.org/10.2307/2161058
- M. F. Mothebe, P. Kaelo, and O. Ramatebele, Dimension Formulae for the Polynomial Algebra as a Module over the Steenrod Algebra in Degrees Less than or Equal to 12, Journal of Mathematics Research 8 (2016), no. 5, 92–100. http://dx.doi.org/10.5539/jmr.v8n5p92
- M. F. Mothebe and L. Uys, Some relations between admissible monomials for the polynomial algebra, Int. J. Math. Math. Sci. 2015, Art. ID 235806, 7 pp. https://doi.org/10.1155/2015/235806
- S. P. Novikov, The methods of algebraic topology from the viewpoint of cobordism theory, Math. USSR-Izv. 1 (1967), no. 4, 827–913. https://doi.org/10.1070/IM1967v001n04ABEH000591
- J. H. Palmieri, Quillen stratification for the Steenrod algebra, Ann. of Math. (2) 149 (1999), no. 2, 421-449. https://doi.org/10.2307/120969
- F. P. Peterson, Generators of H*(ℝP∞xℝP∞) as a module over the Steenrod algebra, Abstracts Papers Presented Am. Math. Soc. 833 (1987), 55-89.
- Đ. V. Phúc, The hit problem for the polynomial algebra of five variables in degree seventeen and its application, East-West J. Math. 18 (2016), no. 1, 27–46.
- Đ. V. Phúc, The "hit" problem of five variables in the generic degree and its application, Topology Appl. 282 (2020), 107321: 34 pages. https://doi.org/10.1016/j.topol.2020.107321
- Đ. V. Phúc, On Peterson's open problem and representations of the general linear groups, J. Korean Math. Soc. 58 (2021), no. 3, 643–702. https://doi.org/10.4134/JKMS.j200219
- Đ. V. Phúc, On the dimension of H*((ℤ2)×t,ℤ2) as a module over Steenrod ring, Topology Appl. 303 (2021), 107856: 43 pages. https://doi.org/10.1016/j.topol.2021.
- Đ. V. Phúc, The affirmative answer to Singer's conjecture on the algebraic transfer of rank four, Proc. Roy. Soc. Edinburgh Sect. A 153 (2023), no. 5, 1529–1542. https://doi.org/10.1017/prm.2022.57
- Đ. V. Phúc, A note on the hit problem for the polynomial algebra of six variables and the sixth algebraic transfer, J. Algebra 613 (2023), 1–31. https://doi.org/10.1016/j.jalgebra.2022.08.028
- Đ. V. Phúc, On Singer's conjecture for the fourth algebraic transfer in certain generic degrees, To appear in J. Homotopy Relat. Struct. (2024).
- Đ. V. Phúc, On the dimensions of the graded space F2 ⊗A F2[x1, x2, . . . , xs] at degreess+ 5 and its relation to algebraic transfers, To appear in Internat. J. Algebra Comput. (2024).
- Đ. V. Phúc, On A-generators of the cohomology H*(V ⊕5) = ℤ/2[u1, . . . , u5] and the cohomological transfer of rank 5, Rend. Circ. Mat. Palermo, II. Ser 73 (2024), 989–1007. https://doi.org/10.1007/s12215-023-00964-7
- Đ. V. Phúc, A note on the hit problem for the polynomial algebra in the case of odd primes and its application, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 118 (2024), art. no. 22. https://doi.org/10.1007/s13398-023-01517-4
- Đ. V. Phúc and N. Sum, On the generators of the polynomial algebra as a module over the Steenrod algebra, C. R. Math. Acad. Sci. Paris 353 (2015), no. 11, 1035–1040. https://doi.org/10.1016/j.crma.2015.09.002.
- D. G. Quillen, The spectrum of an equivariant cohomology ring: I, Ann. of Math. (2) 94 (1971), no. 3, 549–572. https://doi.org/10.2307/1970770
- D. G. Quillen, The spectrum of an equivariant cohomology ring: II, Ann. of Math. (2) 94 (1971), no. 3, 573–602. https://doi.org/10.2307/1970771
- V. Quỳnh, On behavior of the fifth algebraic transfer, Proceedings of the School and Conference in Algebraic Topology, 309–326, Geom. Topol. Monogr., 11, Geom. Topol. Publ., Coventry, 2007.
- J. H. Silverman, Hit polynomials and conjugation in the dual Steenrod algebra, Math. Proc. Cambridge Philos. Soc. 123 (1998), no. 3, 531–547. https://doi.org/10.1017/S0305004197002302
- W. M. Singer, The transfer in homological algebra, Math. Z. 202 (1989), no. 4, 493–523. https://doi.org/10.1007/BF01221587
- W. M. Singer, On the action of the Steenrod squares on polynomial algebras, Proc. Amer. Math. Soc. 111 (1991), no. 2, 577–583. https://doi.org/10.1090/S0002-9939-1991-1045150-9
- N. E. Steenrod, and D. B. A. Epstein, Cohomology Operations, Ann. of Math., volume 50, Princeton Press, New Jersey, 1962.
- N. Sum, On the Peterson hit problem of five variables and its applications to the fifth Singer transfer, East-West J. Math. 16 (2014), 47–62.
- N. Sum, On the Peterson hit problem, Adv. Math. 274 (2015), 432–489. https://doi.org/10.1016/j.aim.2015.01.010
- N. Sum, The squaring operation and the Singer algebraic transfer, Vietnam J. Math. 49 (2021), 1079–1096. https://doi.org/10.1007/s10013-020-00423-1
- R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17–86. http://eudml.org/doc/139072 https://doi.org/10.1007/BF02566923
- N. K. Tin, The hit problem for the polynomial algebra in five variables and applications, PhD. thesis, Quy Nhon University, 2017.
- G. Walker and R. M. W. Wood, Polynomials and the mod 2 Steenrod Algebra. Vol. 1. The Peterson Hit Problem, London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, volume 441, 2018.
- R. M. W. Wood, Steenrod squares of polgnomials and the Peterson conjecture, Math. Proc. Cambriges Phil. Soc. 105 (1989), 307-309. https://doi.org/10.1017/S0305004100067797