DOI QR코드

DOI QR Code

THE CONVERGENCE RATE FOR SCHRÖDINGER OPERATORS WITH COMPLEX TIME

  • Tie Li (School of Mathematics and Statistics Hainan Normal University and Faculty of Mathematics Baotou Teachers' College Inner Mongolia University of Science and Technology) ;
  • Yaoming Niu (Faculty of Mathematics and Computer Engineering Ordos Institute of Technology) ;
  • Ying Xue (Faculty of Mathematics Baotou Teachers' College Inner Mongolia University of Science and Technology)
  • Received : 2023.08.31
  • Accepted : 2024.02.23
  • Published : 2024.11.01

Abstract

In this paper, in one spatial dimension, we study the convergence rate for Schrödinger operators with complex time Pta,𝛾, which is defined by $${P^t_{a,{\gamma}}}f(x)={S^{t+it^{\gamma}}_a}f(x)=\int_{\mathbb{R}}{e^{ix{\xi}}\,e^{ix{\mid}{\xi}{\mid}^a}\,e^{-t^{\gamma}{\mid}{\xi}{\mid}^a}}{\hat{f}}({\xi})d{\xi},$$ where 𝛾 > 0 and a > 0. The convergence rate for Schrödinger operators with complex time is different from that of classical Schrödinger operators in Cao-Fan-Wang (Illinois J. Math. 62: 365-380, 2018).

Keywords

Acknowledgement

The authors would like to express their deep gratitude to the referees for their very careful reading, important comments and valuable suggestions.

References

  1. A. D. Bailey, Boundedness of maximal operators of Schrödinger type with complex time, Rev. Mat. Iberoam. 29 (2013), no.2, 531–546. https://doi.org/10.4171/rmi/729
  2. J. Bourgain, On the Schrödinger maximal functionin higher dimension, Proc. Steklov Inst. Math. 280 (2013), 46–60. https://doi.org/10.1134/S0081543813010045
  3. J. Bourgain, A note on the Schrödinger maximal function, J. Anal. Math. 130 (2016), 393–396. https://doi.org/10.1007/s11854-016-0042-8
  4. Z. Cao, D. Fan, and M. Wang, The rate of convergence on Schrödinger operator, Illinois J. Math. 62 (2018), 365–380. https://doi.org/10.1215/ijm/1552442667
  5. L. Carleson, Some analytic problems related to statistical mechanics, Euclidean Harmonic Analysis (Proc. Sem., Univ. Maryland, College Park, Md., 1979), 5–45, Lecture Notes in Math., 779, Springer, Berlin.
  6. B. Dahlberg and C. E. Kenig, A note on the almost everywhere behavior of solutions to the Schrödinger equation, Harmonic Analysis (Minneapolis, Minn., 1981), 205–209, Lecture Notes in Math., 908, Springer, Berlin.
  7. X. Du, L. Guth, and X. Li, A sharp Schrödinger maximal estimate in ℝ2, Ann. of Math. (2) 186 (2017), no. 2, 607–640. https://doi.org/10.4007/annals.2017.186.2.5
  8. X. Du and R. Zhang, Sharp L2 estimates of the Schrödinger maximal function in higher dimensions, Ann. of Math. (2) 189 (2019), no. 3, 837–861. https://doi.org/10.4007/annals.2019.189.3.4
  9. S. H. Lee, On pointwise convergence of the solutions to Schrödinger equations in ℝ2, Int. Math. Res. Not. 2006, Art. ID 32597, 21 pp.
  10. W. Li and H. Wang, A study on a class of generalized Schrödinger operators, J. Funct. Anal. 281 (2021), no. 9, Paper No. 109203, 38 pp. https://doi.org/10.1016/j.jfa.2021.109203
  11. Y. Niu and Y. Xue, Maximal Schrödinger operators with complex time, Ann. Funct. Anal. 11 (2020), no. 3, 662–679. https://doi.org/10.1007/s43034-019-00046-9
  12. Y. Niu and Y. Xue, Estimates for Schrödinger maximal operators along curve with complex time, J. Korean Math. Soc. 57 (2020), no. 1, 89–111. https://doi.org/10.4134/JKMS.j180558
  13. J. L. Rubio de Francia, Maximal functions and Fourier transforms, Duke Math. J. 53 (1986), no. 2, 395–404. https://doi.org/10.1215/S0012-7094-86-05324-X
  14. P. Sjölin, Regularity of solutions to the Schrödinger equation, Duke Math. J. 55 (1987), no. 3, 699–715. https://doi.org/10.1215/S0012-7094-87-05535-9
  15. P. Sjölin, Maximal estimates for solutions to the nonelliptic Schrödinger equation, Bull. Lond. Math. Soc. 39 (2007), no. 3, 404–412. https://doi.org/10.1112/blms/bdm024
  16. P. Sjölin, Maximal operators of Schrödinger type with a complex parameter, Math. Scand. 105 (2009), no. 1, 121–133. https://doi.org/10.7146/math.scand.a-15109
  17. P. Sjlin and F. Soria de Diego, A note on Schrödinger maximal operators with a complex parameter, J. Aust. Math. Soc. 88 (2010), no. 3, 405–412. https://doi.org/10.1017/S1446788710000170
  18. C. D. Sogge and E. M. Stein, Averages of functions over hypersurfaces in Rn, Invent. Math. 82 (1985), no. 3, 543–556. https://doi.org/10.1007/BF01388869
  19. E. M. Stein, Oscillatory integrals in Fourier analysis, Beijing Lectures in Harmonic Analysis (Beijing, 1984), 307–355, Ann. of Math. Stud., 112, Princeton Univ. Press, Princeton, NJ, 1986.
  20. E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, 43, Princeton Univ. Press, Princeton, NJ, 1993.
  21. T. C. Tao, A sharp bilinear restrictions estimate for paraboloids, Geom. Funct. Anal. 13 (2003), no. 6, 1359-1384. https://doi.org/10.1007/s00039-003-0449-0
  22. L. Vega, Schrödinger equations: pointuise conuergence to the initial data, Proc. Amer. Math. Soc. 102 (1988), no. 4, 874-878. https://doi.org/10.2307/2047326
  23. L. Vega, El Multiplicador de Schrödinger: la Función Maximal y los Operadores de Restricción (The Schrödinger Multiplier: the Maximal Function and the Restriction Operators - in Spanish), PhD thesis, Universidad Autónoma de Madrid, 1988.
  24. B. Walther, Some Lp(L)- and L2(L2)-estimates for oscillatory Fourier transforms, Analysis of Divergence (Orono, ME, 1997), 213–231, Appl. Numer. Harmon. Anal, Birkhäuser Boston, Boston, MA, 1999.
  25. J. Yuan, T. Zhao, and J. Zheng, On the dimension of divergence sets of Schrödinger equation with complex time, Nonlinear Anal. 208 (2021), Paper No. 112312, 28 pp. https://doi.org/10.1016/j.na.2021.112312