Acknowledgement
The authors would like to express their deep gratitude to the referees for their very careful reading, important comments and valuable suggestions.
References
- A. D. Bailey, Boundedness of maximal operators of Schrödinger type with complex time, Rev. Mat. Iberoam. 29 (2013), no.2, 531–546. https://doi.org/10.4171/rmi/729
- J. Bourgain, On the Schrödinger maximal functionin higher dimension, Proc. Steklov Inst. Math. 280 (2013), 46–60. https://doi.org/10.1134/S0081543813010045
- J. Bourgain, A note on the Schrödinger maximal function, J. Anal. Math. 130 (2016), 393–396. https://doi.org/10.1007/s11854-016-0042-8
- Z. Cao, D. Fan, and M. Wang, The rate of convergence on Schrödinger operator, Illinois J. Math. 62 (2018), 365–380. https://doi.org/10.1215/ijm/1552442667
- L. Carleson, Some analytic problems related to statistical mechanics, Euclidean Harmonic Analysis (Proc. Sem., Univ. Maryland, College Park, Md., 1979), 5–45, Lecture Notes in Math., 779, Springer, Berlin.
- B. Dahlberg and C. E. Kenig, A note on the almost everywhere behavior of solutions to the Schrödinger equation, Harmonic Analysis (Minneapolis, Minn., 1981), 205–209, Lecture Notes in Math., 908, Springer, Berlin.
- X. Du, L. Guth, and X. Li, A sharp Schrödinger maximal estimate in ℝ2, Ann. of Math. (2) 186 (2017), no. 2, 607–640. https://doi.org/10.4007/annals.2017.186.2.5
- X. Du and R. Zhang, Sharp L2 estimates of the Schrödinger maximal function in higher dimensions, Ann. of Math. (2) 189 (2019), no. 3, 837–861. https://doi.org/10.4007/annals.2019.189.3.4
- S. H. Lee, On pointwise convergence of the solutions to Schrödinger equations in ℝ2, Int. Math. Res. Not. 2006, Art. ID 32597, 21 pp.
- W. Li and H. Wang, A study on a class of generalized Schrödinger operators, J. Funct. Anal. 281 (2021), no. 9, Paper No. 109203, 38 pp. https://doi.org/10.1016/j.jfa.2021.109203
- Y. Niu and Y. Xue, Maximal Schrödinger operators with complex time, Ann. Funct. Anal. 11 (2020), no. 3, 662–679. https://doi.org/10.1007/s43034-019-00046-9
- Y. Niu and Y. Xue, Estimates for Schrödinger maximal operators along curve with complex time, J. Korean Math. Soc. 57 (2020), no. 1, 89–111. https://doi.org/10.4134/JKMS.j180558
- J. L. Rubio de Francia, Maximal functions and Fourier transforms, Duke Math. J. 53 (1986), no. 2, 395–404. https://doi.org/10.1215/S0012-7094-86-05324-X
- P. Sjölin, Regularity of solutions to the Schrödinger equation, Duke Math. J. 55 (1987), no. 3, 699–715. https://doi.org/10.1215/S0012-7094-87-05535-9
- P. Sjölin, Maximal estimates for solutions to the nonelliptic Schrödinger equation, Bull. Lond. Math. Soc. 39 (2007), no. 3, 404–412. https://doi.org/10.1112/blms/bdm024
- P. Sjölin, Maximal operators of Schrödinger type with a complex parameter, Math. Scand. 105 (2009), no. 1, 121–133. https://doi.org/10.7146/math.scand.a-15109
- P. Sjölin and F. Soria de Diego, A note on Schrödinger maximal operators with a complex parameter, J. Aust. Math. Soc. 88 (2010), no. 3, 405–412. https://doi.org/10.1017/S1446788710000170
- C. D. Sogge and E. M. Stein, Averages of functions over hypersurfaces in Rn, Invent. Math. 82 (1985), no. 3, 543–556. https://doi.org/10.1007/BF01388869
- E. M. Stein, Oscillatory integrals in Fourier analysis, Beijing Lectures in Harmonic Analysis (Beijing, 1984), 307–355, Ann. of Math. Stud., 112, Princeton Univ. Press, Princeton, NJ, 1986.
- E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, 43, Princeton Univ. Press, Princeton, NJ, 1993.
- T. C. Tao, A sharp bilinear restrictions estimate for paraboloids, Geom. Funct. Anal. 13 (2003), no. 6, 1359-1384. https://doi.org/10.1007/s00039-003-0449-0
- L. Vega, Schrödinger equations: pointuise conuergence to the initial data, Proc. Amer. Math. Soc. 102 (1988), no. 4, 874-878. https://doi.org/10.2307/2047326
- L. Vega, El Multiplicador de Schrödinger: la Función Maximal y los Operadores de Restricción (The Schrödinger Multiplier: the Maximal Function and the Restriction Operators - in Spanish), PhD thesis, Universidad Autónoma de Madrid, 1988.
- B. Walther, Some Lp(L∞)- and L2(L2)-estimates for oscillatory Fourier transforms, Analysis of Divergence (Orono, ME, 1997), 213–231, Appl. Numer. Harmon. Anal, Birkhäuser Boston, Boston, MA, 1999.
- J. Yuan, T. Zhao, and J. Zheng, On the dimension of divergence sets of Schrödinger equation with complex time, Nonlinear Anal. 208 (2021), Paper No. 112312, 28 pp. https://doi.org/10.1016/j.na.2021.112312