Acknowledgement
We would like to thank Dingxin Zhang for helpful discussions and the referee for helpful suggestions. BYX thanks Morningside Center of Mathematics and Shing-Tung Yau Center of Southeast University for providing a stimulating environment. SSW thanks Shing-Tung Yau Center of Southeast University and Institute of Mathematics at Academia Sinica for providing a stimulating environment.
References
- D. Abramovich and A. Polishchuk, Sheaves of t-structures and valuative criteria for stable complexes, J. Reine Angew. Math. 590 (2006), 89–130. https://doi.org/10.1515/CRELLE.2006.005
- A. Bayer, M. Lahoz, E. Macr̀ı, H. Nuer, A. Perry, and P. Stellari, Stability conditions in families, Publ. Math. Inst. Hautes Études Sci. 133 (2021), 157–325. https://doi.org/10.1007/s10240-021-00124-6
- K. A. Behrend, Donaldson-Thomas type invariants via microlocal geometry, Ann. of Math. (2) 170 (2009), no. 3, 1307–1338. https://doi.org/10.4007/annals.2009.170.1307
- T. Bridgeland, Hall algebras and curve-counting invariants, J. Amer. Math. Soc. 24 (2011), no. 4, 969–998. https://doi.org/10.1090/S0894-0347-2011-00701-7
- T. Bridgeland, An introduction to motivic Hall algebras, Adv. Math. 229 (2012), no. 1, 102–138. https://doi.org/10.1016/j.aim.2011.09.003
- T. Goller and Y. Lin, Rank-one sheaves and stable pairs on surfaces, Adv. Math. 401 (2022), Paper No. 108322, 32 pp. https://doi.org/10.1016/j.aim.2022.108322
- T. Goller and Y. Lin, Gaeta resolutions and strange duality over rational surfaces, arXiv:2205.14827, 2022.
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. No. 28 (1966), 255 pp.
- D. Happel, I. Reiten, and O. SmaløSverre. Tilting in Abelian Categories and Quasitilted Algebras, Mem. Amer. Math. Soc. 120, no. 575, viii+88pp, 1996.
- D. Huybrechts, Fourier-Mukai Transforms in Algebraic Geometry, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2006. https://doi.org/10.1093/acprof:oso/9780199296866.001.0001
- D. Huybrechts and M. Lehn, Framed modules and their moduli, Internat. J. Math. 6 (1995), no. 2. 297-324. https://doi.org/10.1142/S0129167X9500050X
- D. Huybrechts and M. Lehn, The Geometry of Moduli Spaces of Sheaves, second edition, Cambridge Mathematical Library, Cambridge Univ. Press, Cambridge, 2010. https://doi.org/10.1017/CB09780511711985
- J. Kollár, Families of Varieties of General Type, Cambridge Tracts in Mathematics, 231, Cambridge Univ. Press, Cambridge, 2023.
- A. G. Kuznetsov, Hyperplane sections and derived categories, Izv. Math. 70 (2006), no. 3, 447–547; translated from Izv. Ross. Akad. Nauk Ser. Mat. 70 (2006), no. 3, 23–128. https://doi.org/10.1070/IM2006v070n03ABEH002318
- Y. Lin, Moduli spaces of stable pairs, Pacific J. Math. 294 (2018), no. 1, 123–158. https://doi.org/10.2140/pjm.2018.294.123
- N. Nitsure, Construction of Hilbert and Quot schemes, Fundamental algebraic geometry, 105–137, Math. Surveys Monogr. 123, Amer. Math. Soc., Providence, RI, 2005.
- R. Pandharipande and R. P. Thomas, Curve counting via stable pairs in the derived category, Invent. Math. 178 (2009), no. 2, 407–447. https://doi.org/10.1007/s00222-009-0203-9
- A. Polishchuk, Constant families of t-structures on derived categories of coherent sheaves, Mosc. Math. J. 7 (2007), no. 1, 109–134, 167. https://doi.org/10.17323/1609-4514-2007-7-1-109-134
- F. Rota, Some Quot schemes in tilted hearts and moduli spaces of stable pairs, Internat. J. Math. 32 (2021), no. 13, Paper No. 2150098, 34 pp. https://doi.org/10.1142/S0129167X21500981
- M. Thaddeus, Stable pairs, linear systems and the Verlinde formula, Invent. Math. 117 (1994), no. 2, 317–353. https://doi.org/10.1007/BF01232244
- Y. Toda, Hall algebras in the derived category and higher-rank DT invariants, Algebr. Geom. 7 (2020), no. 3, 240-262. https://doi.org/10.14231/ag-2020-008