DOI QR코드

DOI QR Code

DECORATED SHEAVES AND MORPHISMS IN TILTED HEARTS

  • Yinbang Lin (School of Mathematical Sciences Tongji University) ;
  • Sz-Sheng Wang (Department of Applied Mathematics National Yang Ming Chiao Tung University) ;
  • Bingyu Xia (Shing-Tung Yau Center of Southeast University)
  • Received : 2023.06.22
  • Accepted : 2024.04.19
  • Published : 2024.11.01

Abstract

We identify stable pairs and stable framed sheaves as epimorphisms and monomorphisms in the hearts of tilted t-structures under appropriate conditions. We then identify the moduli spaces with the corresponding Quot spaces. As a result, we obtain the projectivity of the Quot spaces in absolute cases. In addition, we prove a formula in a motivic Hall algebra, which relates together the Quot spaces under a tilt.

Keywords

Acknowledgement

We would like to thank Dingxin Zhang for helpful discussions and the referee for helpful suggestions. BYX thanks Morningside Center of Mathematics and Shing-Tung Yau Center of Southeast University for providing a stimulating environment. SSW thanks Shing-Tung Yau Center of Southeast University and Institute of Mathematics at Academia Sinica for providing a stimulating environment.

References

  1. D. Abramovich and A. Polishchuk, Sheaves of t-structures and valuative criteria for stable complexes, J. Reine Angew. Math. 590 (2006), 89–130. https://doi.org/10.1515/CRELLE.2006.005
  2. A. Bayer, M. Lahoz, E. Macr̀ı, H. Nuer, A. Perry, and P. Stellari, Stability conditions in families, Publ. Math. Inst. Hautes Études Sci. 133 (2021), 157–325. https://doi.org/10.1007/s10240-021-00124-6
  3. K. A. Behrend, Donaldson-Thomas type invariants via microlocal geometry, Ann. of Math. (2) 170 (2009), no. 3, 1307–1338. https://doi.org/10.4007/annals.2009.170.1307
  4. T. Bridgeland, Hall algebras and curve-counting invariants, J. Amer. Math. Soc. 24 (2011), no. 4, 969–998. https://doi.org/10.1090/S0894-0347-2011-00701-7
  5. T. Bridgeland, An introduction to motivic Hall algebras, Adv. Math. 229 (2012), no. 1, 102–138. https://doi.org/10.1016/j.aim.2011.09.003
  6. T. Goller and Y. Lin, Rank-one sheaves and stable pairs on surfaces, Adv. Math. 401 (2022), Paper No. 108322, 32 pp. https://doi.org/10.1016/j.aim.2022.108322
  7. T. Goller and Y. Lin, Gaeta resolutions and strange duality over rational surfaces, arXiv:2205.14827, 2022.
  8. A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. No. 28 (1966), 255 pp.
  9. D. Happel, I. Reiten, and O. SmaløSverre. Tilting in Abelian Categories and Quasitilted Algebras, Mem. Amer. Math. Soc. 120, no. 575, viii+88pp, 1996.
  10. D. Huybrechts, Fourier-Mukai Transforms in Algebraic Geometry, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2006. https://doi.org/10.1093/acprof:oso/9780199296866.001.0001
  11. D. Huybrechts and M. Lehn, Framed modules and their moduli, Internat. J. Math. 6 (1995), no. 2. 297-324. https://doi.org/10.1142/S0129167X9500050X
  12. D. Huybrechts and M. Lehn, The Geometry of Moduli Spaces of Sheaves, second edition, Cambridge Mathematical Library, Cambridge Univ. Press, Cambridge, 2010. https://doi.org/10.1017/CB09780511711985
  13. J. Kollár, Families of Varieties of General Type, Cambridge Tracts in Mathematics, 231, Cambridge Univ. Press, Cambridge, 2023.
  14. A. G. Kuznetsov, Hyperplane sections and derived categories, Izv. Math. 70 (2006), no. 3, 447–547; translated from Izv. Ross. Akad. Nauk Ser. Mat. 70 (2006), no. 3, 23–128. https://doi.org/10.1070/IM2006v070n03ABEH002318
  15. Y. Lin, Moduli spaces of stable pairs, Pacific J. Math. 294 (2018), no. 1, 123–158. https://doi.org/10.2140/pjm.2018.294.123
  16. N. Nitsure, Construction of Hilbert and Quot schemes, Fundamental algebraic geometry, 105–137, Math. Surveys Monogr. 123, Amer. Math. Soc., Providence, RI, 2005.
  17. R. Pandharipande and R. P. Thomas, Curve counting via stable pairs in the derived category, Invent. Math. 178 (2009), no. 2, 407–447. https://doi.org/10.1007/s00222-009-0203-9
  18. A. Polishchuk, Constant families of t-structures on derived categories of coherent sheaves, Mosc. Math. J. 7 (2007), no. 1, 109–134, 167. https://doi.org/10.17323/1609-4514-2007-7-1-109-134
  19. F. Rota, Some Quot schemes in tilted hearts and moduli spaces of stable pairs, Internat. J. Math. 32 (2021), no. 13, Paper No. 2150098, 34 pp. https://doi.org/10.1142/S0129167X21500981
  20. M. Thaddeus, Stable pairs, linear systems and the Verlinde formula, Invent. Math. 117 (1994), no. 2, 317–353. https://doi.org/10.1007/BF01232244
  21. Y. Toda, Hall algebras in the derived category and higher-rank DT invariants, Algebr. Geom. 7 (2020), no. 3, 240-262. https://doi.org/10.14231/ag-2020-008