
International Journal of Advanced Smart Convergence Vol.13 No.4 145-154 (2024)

http://dx.doi.org/10.7236/IJASC.2024.13.4.145

Copyright© 2024 by The Institute of Internet, Broadcasting and Communication. This is an Open Access article distributed under the terms of

the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0)

Utilizing Generative AI for Test Case Generation:

Comparative Analysis and Guidelines

Woochang Shin

Professor, Dept. of Computer Science, Seokyeong University, Korea

wcshin@skuniv.ac.kr

Abstract

The advancement of generative AI technologies has significantly impacted various domains in software

engineering, particularly in automating test case generation. As software systems become increasingly

complex, manual test case creation faces limitations in terms of efficiency and coverage. This study analyzes

the capabilities and limitations of major generative AI models—ChatGPT, Copilot, and Gemini—in generating

software test cases. We focus on evaluating their performance in boundary value analysis, exception handling,

and property-based testing. Using the ArrayUtils.indexOf() function from the Apache Commons Lang library

as the test subject, we conducted experiments to compare the quality and effectiveness of the test cases

generated by each model. Our findings indicate that while generative AI can efficiently produce a substantial

number of high-quality test cases, there are instances of incorrect test cases and test codes. To address these

issues, we propose guidelines for developers to enhance the reliability and consistency of test case generation

using generative AI. Future research will explore the application of these models to more complex software

systems and further methods to improve their test generation capabilities.

Keywords: Generative AI, Software Testing, Test Case Generation, Property Based Testing, Boundary Value Analysis

1. Introduction

In the field of software engineering, the necessity for applying generative AI has become increasingly

prominent with the advancement of artificial intelligence technologies. Generative AI leverages natural

language processing and deep learning techniques to enhance developer productivity across various domains

such as code auto-generation, bug detection, and documentation [1]. These technologies contribute to

increasing the efficiency of the software development process and providing innovative solutions.

The application of generative AI is also essential in software testing. As the complexity of software systems

increases, manually writing test cases has reached its limitations [2]. By utilizing generative AI, it is possible

to automatically generate test cases for various scenarios, thereby strengthening quality assurance. Existing

automation tools, based on limited patterns or rules, fail to encompass all complex situations [3]. In contrast,

IJASC 24-4-14

Manuscript Received: October. 11, 2024 / Revised: October. 18, 2024 / Accepted: October. 22, 2024

Corresponding Author: wcshin@skuniv.ac.kr

Tel: +82-2-940-7755

Professor, Dept. of Computer Science, Seokyeong University, Korea

mailto:wcshin@skuniv.ac.kr

146 International Journal of Advanced Smart Convergence Vol.13 No.4 145-154 (2024)

generative AI can generate new test cases based on learned data, improving test coverage and depth. However,

several issues exist in automatically generating test cases using generative AI, such as reliability, consistency,

and difficulties in testing complex functionalities [4].

In this paper, we compare and analyze the test case generation capabilities of major generative AI models.

We delve into boundary value analysis techniques, exception handling, and property-based testing. Through

this, we evaluate how generative AI meets various testing requirements and identify its limitations.

Additionally, we propose guidelines for generating consistent and effective test cases. This will provide

practical assistance to developers in developing reliable software using generative AI.

The main contributions of this paper are as follows:

First, we systematically compare and analyze the test case generation capabilities of major generative AI

models such as ChatGPT, Copilot, and Gemini. By doing this, we clearly identify the characteristics, strengths,

and limitations of each model, evaluating the applicability of generative AI in the field of software testing.

Second, we experimentally verify the effectiveness of applying generative AI to various testing techniques,

including boundary value analysis, exception handling, and property-based testing. By assessing the quality of

the generated test cases through code coverage and mutation testing, we provide evidence on whether

generative AI can be effectively utilized in actual testing scenarios.

Third, we present practical guidelines to address potential issues that may arise when generating test cases

using generative AI. This contribution is expected to help developers effectively leverage generative AI to

enhance the reliability and quality of software.

The rest of the paper is organized as follows. Section 2 reviews related works. Section 3 describes the

generative AI's test case generation capabilities, including experimental scenarios and analyses. Section 4

presents a comparative analysis of the results and proposes guidelines. Finally, Section 5 summarizes and

concludes the paper.

2. Related Works

Recent years have seen active research on the utilization of generative AI in the field of software testing.

Generative AI possesses the ability to learn from large amounts of data and generate new data, and it is

expected to bring revolutionary changes in the automatic generation of test cases [5].

Research on automatic generation of software test cases using generative AI can be broadly divided into

black-box testing and white-box testing approaches. In black-box testing, test cases are generated based solely

on inputs and outputs without knowledge of the internal structure of the system. Studies are underway to extract

test cases from user requirements or specifications by leveraging the natural language processing capabilities

of generative AI [6, 7]. For example, Utting et al. proposed a method to automatically generate test scenarios

using generative techniques in model-based testing [8]. On the other hand, white-box testing considers the

internal structure and logic of the code to generate test cases. In this area, research is being conducted to analyze

source code using generative AI and explore paths where potential defects may occur [9, 10]. Specifically,

Korel developed an automated test data generation technique for program path exploration [11].

Studies addressing the problems of automatic test case generation using generative AI are also being

conducted. Wang et al. pointed out that due to biases in the training data, it is challenging to guarantee the

quality and reliability of the test cases generated by generative AI models [4]. Zhang et al. mentioned the

limitations of generative AI in sufficiently considering complex scenarios such as exception handling and

Utilizing Generative AI for Test Case Generation: Comparative Analysis and Guidelines 147

boundary conditions [12]. These issues arise because generative AI does not fully understand the deep

semantics of the code or business logic.

Other related research includes hybrid approaches that combine generative AI with existing testing

techniques. McMinn introduced a method to enhance the efficiency and reliability of test cases by combining

search-based software testing with generative AI [13]. Just et al. developed Defects4J, targeting software

containing real defects, to generate test cases and evaluate testing techniques [14]. They contributed to

detecting and correcting actual defects using generative AI.

Based on these existing studies, this paper aims to analyze the current status and problems of automatic test

case generation using the latest generative AI models and propose effective utilization strategies.

3. Generative AI's Test Case Generation Capabilities

This study assumes a specification-based unit test situation based on black-box testing. In this section, we

compare and analyze the test case generation capabilities of representative generative AI models—ChatGPT,

Copilot, and Gemini. The models of each generative AI are as follows:

• OpenAI's ChatGPT (GPT-4o with Canvas model)

• GitHub's Copilot (Based on the GPT-4o model, September 2024 version)

• Google's Gemini (Gemini 1.5 Pro-002 model)

As the test subject, we selected the indexOf() function of the ArrayUtils class included in the Apache

Commons Lang library, and its specification is shown in Figure 1 [15].

Figure 1. Specification of ArrayUtils.indexOf()

3.1 Test Case Generation According to Boundary Value Analysis

With the specification of the indexOf() function, the prompt content for test case generation provided to the

generative AI is shown in Figure 2.

Figure 2. Prompt-1 for Test Case Generation

 When the specification of ArrayUtils.indexOf() and the Prompt-1 are input into the generative AI, test cases

like those in Figure 3 were generated (Some code omitted).

public static int indexOf(boolean[] array, boolean valueToFind, int startIndex)
; Finds the index of the given value in the array starting at the given index. This method returns INDEX_NOT_FOUND

(-1) for a null input array. A negative startIndex is treated as zero. A startIndex larger than the array length will
return INDEX_NOT_FOUND (-1).

[Parameters]
• array - the array to search through for the object, may be null
• valueToFind - the value to find
• startIndex - the index to start searching at

[Returns]
The index of the value within the array, INDEX_NOT_FOUND (-1) if not found or null array input.

[Prompt-1]
• You are an experienced Java program tester. There is a class called ArrayUtils that has an indexOf()

function. The requirements for the function are described below. We are trying to test this function
using specification-based testing without source code. Generate code that can be tested with JUnit.
When writing JUnit test cases, please use the ParameterizedTest feature.

148 International Journal of Advanced Smart Convergence Vol.13 No.4 145-154 (2024)

[ChatGPT]

public class ArrayUtilsTest0 {
public static Stream<Arguments>

 provideTestArguments() {

 return Stream.of(
 Arguments.of(null,5,0,-1),

 Arguments.of(new int[]{},5,0,-1),

 Arguments.of(new int[]{1,2,3,4,5},3,0, 2),
Arguments.of(new int[]{1,2,3,4,5},3,3,-1),

 Arguments.of(new int[]{1,2,3,4,5},6,0,-1),

 Arguments.of(new int[]{1,2,3,4,5},2,-1, 1),
 Arguments.of(new int[]{1,2,3,4,5},1,10, -1),

 Arguments.of(new int[]{1,2,3,4,5},4,2, 3));

 }
 @ParameterizedTest

 @MethodSource("provideTestArguments")

public void testIndexOf(int[] array, int
 valueToFind, int startIndex, int expected){

 int result = ArrayUtils.indexOf(array,

 valueToFind, startIndex);
 assertEquals(expected, result);

 }

}

[Copilot]

public class ArrayUtilsTest0 {
 @ParameterizedTest

 @MethodSource("indexOfTestCases")

void testIndexOf(int[] array,
 int valueToFind, int startIndex,

 int expected) {

 assertEquals(expected,
 ArrayUtils.indexOf(array, valueToFind,

 startIndex));

 }
static Stream<Arguments>

 indexOfTestCases() {

 return Stream.of(
 Arguments.of(null, 1, 0, -1),

 Arguments.of(new int[]{1,2,3},2,-1,1),

 Arguments.of(new int[]{1,2,3},2,5,-1),
 Arguments.of(new int[]{1,2,3},2,0,1),

 Arguments.of(new int[]{1,2,3},4,0,-1)

);
 }

}

[Gemini]

public class ArrayUtilsTest0 {
 ...

 private static Stream<Arguments>

indexOfTestCases() {
 return Stream.of(

 Arguments.of(null, 5, 0, -1),

 Arguments.of(new int[]{},5,0,-1),
 Arguments.of(new int[]{1,2,3,4,5},3,0,2),

 Arguments.of(new int[]{1,2,3,4,5},1,0,0),

 Arguments.of(new int[]{1,2,3,4,5},5,0,4),
 Arguments.of(new int[]{1,2,3,3,5},3,0,2),

 Arguments.of(new int[]{1,2,3,3,5},3,3,3),

 Arguments.of(new int[]{1,2,3,4,5},6,0,-1),
Arguments.of(new int[]{1,2,3,4,5},3,-1,2),

 Arguments.of(new int[]{1,2,3,4,5},3,-2,2),

 Arguments.of(new int[]{1,2,3,4,5},3,5,-1),
 Arguments.of(new int[]{1,2,3,4,5},3,6,-1),

 Arguments.of(new int[]{1,2,3,4,5},4,2,3),

 Arguments.of(new int[]{1,2,3,4,5},4,3,3),
 Arguments.of(new int[]{1,2,3,4,5},4,4,3),

 Arguments.of(new int[]{1,2,3,4,5},5,4,4)); }

}

Figure 3. Example of test code generated by generative AI for Prompt-1

Despite entering the same request, the generative AI generated different test cases and test codes each time.

Occasionally, incorrectly written test cases were included among the generated ones. For example, in Figure

3, in the 15th test case generated by Gemini, "Arguments.of(new int[]{1,2,3,4,5}, 4, 4, 3)", where valueToFind

is 4 and startIndex is 4, the indexOf() function should return -1 (INDEX_NOT_FOUND), but it incorrectly

considered the result as 3.

To diversify the test cases further, we explicitly added the application of the boundary value analysis

technique to the existing Prompt-1 to create Prompt-2 and added default boundary values for each data type to

create Prompt-3. The additional sentences in Prompt-2 and Prompt-3 are shown in Figure 4.

[Prompt-2]
• Please write test cases using combinations of boundary values of all inputs according to the

Boundary Value Analysis technique.

[Prompt-3]
• Please write test cases using combinations of boundary values of all inputs according to the

Boundary Value Analysis technique.
• When setting the boundary values for the function inputs in the test cases, please add the

following boundary values according to the input's data type:
- int, short, byte, long type arguments: -1, 0, 1
- String arguments: NULL, empty string, single-character string, multi-character string
- Array arguments: NULL, empty array, single-element array, multiple-element array

Figure 4. Additional Sentences in Prompts for Boundary Value Analysis

Each generative AI was prompted with Prompt-1, Prompt-2, and Prompt-3 to generate test cases, and each

prompt was repeated three times. To minimize the influence of previous test case generation results, a new

conversation window was opened each time the prompt was entered. The number of test cases generated by

repeated experiments and the number of incorrectly generated test cases are shown in Table 1.

Utilizing Generative AI for Test Case Generation: Comparative Analysis and Guidelines 149

Table 1. Number of Generated Test Cases and Errors

 Prompt #

Try -1 Try -2 Try -3 Average

of
test-
case

of wrong
test-case

of
test-
case

of
wrong

test-case

of
test-
case

of
wrong

test-case

of
test-
case

of
wrong

test-case

ChatGPT

Prompt-1 8 0 13 0 8 0 9.67 0.00

Prompt-2 12 1 13 0 16 0 13.67 0.33

Prompt-3 19 0 15 0 20 0 18.00 0.00

Copilot

Prompt-1 7 0 5 0 7 0 6.33 0.00

Prompt-2 13 0 21 0 13 0 15.67 0.00

Prompt-3 20 0 15 0 11 0 15.33 0.00

Gemini

Prompt-1 16 1 12 0 12 0 13.33 0.33

Prompt-2 21 0 16 0 12 0 16.33 0.00

Prompt-3 36 0 30 3 28 0 31.33 1.00

The results showed that the number of test cases generated generally increased as more test case-related

requests were added to the prompt content input into the generative AI. Assuming that the ArrayUtils.indexOf()

function code has no errors, most of the test cases generated by the generative AI were correct, but occasionally

some incorrect test cases were generated. In the case of ChatGPT, 1 out of 39 generated test cases was

incorrectly generated, and Gemini generated 4 incorrect test cases out of 73.

3.2 Test Case Generation with Exception Objects

To evaluate the ability to generate test cases for functions that throw exceptions, we modified the

specification of ArrayUtils.indexOf() so that it throws a RuntimeException("Invalid argument") when the array

argument is null or the startIndex argument is negative, and we created Prompt-4 accordingly. When Prompt-

4 was input, the generative AI generated test cases for the modified ArrayUtils.indexOf() and also generated

test codes handling the Exception object. The experimental results are shown in Table 2.

Table 2. Exception Handling Test Case Generation Results

 Prompt #

Try-1 Try-2 Try-3 Average

of
test-
case

of wrong
test-case

of
test-
case

of
wrong

test-case

of
test-
case

of
wrong

test-case

of
test-
case

of
wrong

test-case

ChatGPT Prompt-4 8 2 13 0 12 0 11 0.67

Copilot Prompt-4 9 0 13 0 15 0 12.33 0

Gemini Prompt-4 155 0 96 0 18 2 89.67 0.67

The generative AI wrote test cases for functions that throw exceptions well. However, some errors were

found in ChatGPT and Gemini. The two errors that occurred in ChatGPT's Try-1 were not due to incorrectly

generated test cases but errors that occurred in the test code executing the test cases. In Gemini's Try-3, the

two errors were cases where INDEX_NOT_FOUND was incorrectly used as the expected result instead of the

RuntimeException object.

Interestingly, in Gemini's Try-1 and Try-2, a significantly large number of test cases were generated. In

these cases, Gemini did not simply generate an array of test cases but generated test codes that dynamically

create test cases by defining arrays of boundary values for each input (array, valueToFind, startIndex) and

combining elements of these arrays.

150 International Journal of Advanced Smart Convergence Vol.13 No.4 145-154 (2024)

3.3 Property-Based Testing Technique

Property-based testing is a method that focuses on testing specific properties or characteristics of software,

aiming to verify not only functional requirements but also non-functional attributes such as performance,

security, and reliability. This method dynamically generates many test cases based on properties to confirm

that the system behaves as expected under various inputs and conditions, effectively identifying potential

defects or areas for improvement. However, writing property-based tests is significantly more challenging than

example-based tests.

In this study, we experimented to see if generative AI can effectively write property-based test codes. For this

purpose, we modified Prompt-1 by replacing the requirement for JUnit with the property-based testing

framework jqwik [16]. Prompt-5 for property-based test code generation is shown in Figure 5.

Figure 5. Prompt-5 for Property-Based Testing

The generative AI received Prompt-5 and, understanding the characteristics of the function, generated

functions that dynamically test each property. The generated test functions are shown in Figure 6.

[ChatGPT]

• testNullArrayReturnsIndexNotFound

• testNegativeStartIndexIsTreatedAsZero

• testStartIndexGreaterThanArrayLength

ReturnsIndexNotFound

• testValueFoundInArray

• testValueNotFoundInArray

• testIndexOfWithValidStartIndex

[Copilot]

• testNullArray

• testNegativeStartIndex

• testStartIndexLargerThanArrayLength

• testValuePresentInArray

• testValueNotPresentInArray

[Gemini]

• nullArray

• emptyArray

• negativeStartIndex

• startIndexGreaterThanLength

• valueFound

• valueNotFound

• startIndexWithinRangeValueFound

Figure 6. Property-Based Test Functions Generated by Generative AI

Property-based test functions generate 1,000 test cases with random combinations of input values and, after

filtering out those that do not meet preconditions, proceed with testing using test cases that meet the conditions.

That is, not all of the 1,000 generated test cases are used for function testing.

In most cases, testing proceeded smoothly, and hundreds of test cases that met the preconditions passed for

each property-based test function. However, some issues were found in the experimental results. First, in

ChatGPT's testIndexOfWithValidStartIndex() function, when 1,000 test cases were generated randomly, more

than 870 did not meet the preconditions, causing an error in jqwik. This can be resolved by adjusting the

generation range of the parameters used in the combinations. Second, in Copilot's

testValueNotPresentInArray() function, test cases that did not meet the preconditions among the randomly

generated test cases should be filtered out, but they were incorrectly considered as test failures. This is a clear

error in Copilot's generation of the property-based test function. Lastly, in Gemini's valueFound() and

startIndexWithinRangeValueFound() functions, when the size of the randomly generated array argument was

smaller than the startIndex, it was not properly filtered, causing an ArrayIndexOutOfBoundsException. This is

also an error in Gemini's generation of the property-based test function.

[Prompt-5]
• (same as Prompt-1)
• Please generate code that can be tested using jqwik, a property-based testing framework.

Utilizing Generative AI for Test Case Generation: Comparative Analysis and Guidelines 151

4. Comparative Analysis

Generative AIs can generate example-based test cases and property-based test code based on function

specifications for unit testing, and have shown that the generated test cases and test code mostly work correctly.

However, the fact that test cases function properly does not guarantee the quality of the test cases.

In this paper, we used two methods to verify the quality of the test cases created by generative AIs. One is

to measure the code coverage of the ArrayUtils.indexOf() function for each test suite, and the other is to

perform mutation testing by deliberately inserting bugs into the ArrayUtils.indexOf() function. The actual code

of the ArrayUtils.indexOf() function is shown in Figure 7.

Figure 7. Source Code of ArrayUtils.indexOf()

4.1 Code Coverage Measurement

Code coverage is a software testing metric that measures how much of the source code is executed when a

specific test suite runs. It helps identify untested parts of the code, discover potential bugs, and improve

software quality. To measure code coverage, we used the open-source library JaCoCo [17]. JaCoCo executes

the test suite and provides a coverage report showing executed instructions, missed instructions, and missed

branches.

A total of 27 test suites were written, with each of the three generative AI models generating test suites three

times (Try-1, Try-2, Try-3) for the three prompts (Prompt-1, Prompt-2, Prompt-3). After measuring the code

coverage of the written test suites, all test suites—including Copilot/Prompt-1/Try-2, which had the fewest test

cases—showed a 100% coverage rate. This is considered to be because the code of the ArrayUtils.indexOf()

function does not have complex branching, and the loop statements are written in a simple form.

4.2 Mutation Testing

Mutation testing is a software testing technique where small changes or errors are intentionally injected into

the source code to evaluate whether existing test cases can detect these changes or fail, thereby measuring the

effectiveness and completeness of the tests. For testing, we wrote four mutated versions by modifying parts of

the code of ArrayUtils.indexOf(), and the changes in each version are shown in Table 3.

Table 3. Code Modifications for Mutation Testing
Version Line # Original code Modified code

(a) 4 if (array == null) if (array != null)

(b) 6 if (startIndex < 0) if (true || startIndex)

01: public class ArrayUtils {

02: private static final int INDEX_NOT_FOUND = -1;

03: public static int indexOf(final int[] array, final int valueToFind, int startIndex) {

04: if (array == null)

05: return INDEX_NOT_FOUND;

06: if (startIndex < 0)

07: startIndex = 0;

08: for (int i = startIndex; i < array.length; i++)

09: if (valueToFind == array[i]) return i;

10: return INDEX_NOT_FOUND;

11: }

12: }

152 International Journal of Advanced Smart Convergence Vol.13 No.4 145-154 (2024)

(c) 7 startIndex = 0 startIndex = 1

(d) 8 i++ i--

The test results for the four mutated codes showed that mutation versions (a), (b), and (d) all failed in all 27

test suites shown in Table 3. This indicates that the test suites effectively detected the intentionally inserted

bugs.

In the case of mutation version (c), many test suites failed to detect the bug. Excluding the incorrectly

generated test cases, after executing a total of 27 test suites, 13 test suites did not detect the bug and passed the

tests. Unlike example-based testing, the test codes generated in Prompt-4, which perform property-based

testing, all detected the bug in the mutated code.

Table 4. Test Suite Execution Results for Mutated Code (c)

 Prompt # Try-1 Try-2 Try-3

ChatGPT

Prompt-1 P P P

Prompt-2 P P F

Prompt-3 P P P

Copilot

Prompt-1 P P P

Prompt-2 F F F

Prompt-3 F F P

Gemini

Prompt-1 P F F

Prompt-2 F F F

Prompt-3 F F F

 * P: pass, F: Fail

4.3 Analysis Results and Guidelines

After analyzing the test case generation capabilities of major generative AIs, we found that they efficiently

produce test cases at a considerable level. While there are still instances where incorrect test cases or test code

are generated, the proportion is minimal (1% to 6%) and is deemed to be within an acceptable range.

The analysis results are as follows:

• The number of generated test cases varies depending on the content of the prompt input.

; Specifying techniques like boundary value analysis resulted in generating more test cases than general

test case generation requests.

• The error rate of test cases generated by generative AI (example-based) was about 1%~6%.

; Since most of the errors can be easily corrected, the usefulness of the generated test cases is sufficient.

• The quality of the test cases was found to be excellent.

; Although the function used in the experiment is simple, all generated test suites measured a code

coverage rate of 100%. In mutation testing, the detection rate was low (51.9%) in example-based testing

but was 100% in property-based testing.

Based on the analysis results, we propose the following guidelines for test case generation using generative

AI:

• Guideline 1: Explicitly include specific testing techniques in the prompt content when generating test

cases.

; Request the generation of test cases using combinations of boundary values for each argument by

specifying techniques like boundary value analysis.

• Guideline 2: Consider that the generated test cases and test codes may contain errors.

Utilizing Generative AI for Test Case Generation: Comparative Analysis and Guidelines 153

; If an error occurs after executing the test cases, review whether it is due to an error in the test case

itself.

• Guideline 3: Combine example-based testing with property-based testing.

; For subtle bugs, example-based testing may not be sufficient. Specify property-based test code

generation frameworks and request test code generation based on them.

5. Conclusion

In this study, we conducted an in-depth analysis of the current state and challenges of automatic software

test case generation using generative AI. By comparing the test case generation capabilities of major generative

AI models such as ChatGPT, Copilot, and Gemini, we confirmed that generative AI can efficiently generate a

considerable number of test cases with high quality. In particular, test case generation that considers boundary

value analysis techniques and exception handling showed high accuracy and comprehensiveness.

However, we found that some incorrect test cases or test codes can be generated, and that techniques such

as property-based testing need to be used in parallel to fully detect subtle bugs. To address these issues, this

paper presented specific guidelines to help developers effectively utilize generative AI.

These guidelines are expected to enhance the utilization of generative AI and contribute to improving the

reliability and quality of software. Future research will involve an in-depth analysis of generative AI's test case

generation capabilities for more complex software systems and seek methods to improve reliability and

consistency.

Acknowledgement

This Research was supported by Seokyeong University in 2023.

References

[1] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, "A Survey of Machine Learning for Big Code and Naturalness,"

ACM Computing Surveys, vol. 51, no. 4, pp. 1–37, Jul. 2018. DOI: http://doi.org/10.1145/3212695

[2] G. Fraser and A. Arcuri, "Whole Test Suite Generation," IEEE Transactions on Software Engineering, vol. 39, no.

2, pp. 276–291, Feb. 2013. DOI: https://doi.org/10.1109/TSE.2012.14

[3] C. C. Michael, G. McGraw, and M. A. Schatz, "Generating Software Test Data by Evolution," IEEE Transactions

on Software Engineering, vol. 27, no. 12, pp. 1085–1110, Aug. 2002. DOI: http://doi.org/10.1109/32.988709

[4] S. Wang, T. Liu, and L. Tan, "Automatically Learning Semantic Features for Defect Prediction," in Proceedings of

the 38th International Conference on Software Engineering, May 2016, pp. 297–308. DOI:

http://doi.org/10.1145/2884781.2884804

[5] M. Islam, F. Khan, S. Alam, and M. Hasan, "Artificial Intelligence in Software Testing: A Systematic Review,"

IEEE Tencon 2023. DOI: http://doi.org/10.1109/TENCON58879.2023.10322349

[6] S. Ali, L. C. Briand, H. Hemmati, R. K. Panesar-Walawege, "A Systematic Review of the Application and Empirical

Investigation of Search-Based Test Case Generation," IEEE Transactions on Software Engineering, vol. 36, no. 6,

pp. 742-762, Dec. 2010, DOI: http://doi.org/10.1109/TSE.2009.52

[7] G. Fraser, A. Arcuri, "Whole Test Suite Generation," IEEE Transactions on Software Engineering, vol. 39, no. 2,

pp. 276-291, 2013. DOI: http://doi.org/10.1109/TSE.2012.14

[8] M. Utting, A. Pretschner, B. Legeard, "A Taxonomy of Model-Based Testing Approaches," Software: Testing,

Verification and Reliability, vol. 22, no. 5, pp. 297-312, 2012. DOI: http://doi.org/10.1002/stvr.456

[9] R. G. Hamlet, "Random Testing," Encyclopedia of Software Engineering, Wiley, 2002. DOI:

https://doi.org/10.1002/0471028959.sof293

http://doi.org/10.1145/3212695
https://doi.org/10.1109/TSE.2012.14
http://doi.org/10.1109/32.988709
http://doi.org/10.1145/2884781.2884804
http://doi.org/10.1109/TENCON58879.2023.10322349
http://doi.org/10.1109/TSE.2009.52
http://doi.org/10.1109/TSE.2012.14
http://doi.org/10.1002/stvr.456
https://doi.org/10.1002/0471028959.sof293

154 International Journal of Advanced Smart Convergence Vol.13 No.4 145-154 (2024)

[10] P. Tonella, "Evolutionary Testing of Classes," Proceedings of the ACM SIGSOFT International Symposium on

Software Testing and Analysis, pp. 119-128, 2004. DOI: http://doi.org/10.1145/1007512.1007528

[11] B. Korel, "Automated Software Test Data Generation," IEEE Transactions on Software Engineering, vol. 16, no. 8,

pp. 870-879, 1990. DOI: https://doi.org/10.1109/32.57624

[12] Z. Zhang, X. Xie, H. Wang, and T. Xie, "Automated Test Input Generation for Android: Are We There Yet?" in

Proceedings of the 2015 30th IEEE/ACM International Conference on Automated Software Engineering, 2015, pp.

429–440. DOI: https://doi.org/10.48550/arXiv.1503.07217

[13] P. McMinn, "Search-Based Software Test Data Generation: A Survey," Software: Testing, Verification and

Reliability, vol. 14, no. 2, pp. 105–156, 2004. DOI: http://doi.org/10.1002/stvr.294

[14] J. Just, D. Jalali, and M. D. Ernst, "Defects4J: A Database of Existing Faults to Enable Controlled Testing Studies

for Java Programs," in Proceedings of the 2014 International Symposium on Software Testing and Analysis, 2014,

pp. 437–440. DOI: http://doi.org/10.1145/2610384.2628055

[15] The Apache Software Foundation, Apache Common Lang 3.11 API, https://commons.apache.org/proper/commons-

lang/javadocs/api-release/index.html

[16] Jqwik-Team, The jqwik User Guide 1.9.1, https://jqwik.net/docs/current/user-guide.html

[17] EclEmma Team, JaCoCo Java Code Coverage Library, https://www.eclemma.org/jacoco/index.html

http://doi.org/10.1145/1007512.1007528
https://doi.org/10.1109/32.57624
https://doi.org/10.48550/arXiv.1503.07217
http://doi.org/10.1002/stvr.294
http://doi.org/10.1145/2610384.2628055
https://commons.apache.org/proper/commons-lang/javadocs/api-release/index.html
https://commons.apache.org/proper/commons-lang/javadocs/api-release/index.html
https://jqwik.net/docs/current/user-guide.html
https://www.eclemma.org/jacoco/index.html

