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Abstract 

The advancement of generative AI technologies has significantly impacted various domains in software 

engineering, particularly in automating test case generation. As software systems become increasingly 

complex, manual test case creation faces limitations in terms of efficiency and coverage. This study analyzes 

the capabilities and limitations of major generative AI models—ChatGPT, Copilot, and Gemini—in generating 

software test cases. We focus on evaluating their performance in boundary value analysis, exception handling, 

and property-based testing. Using the ArrayUtils.indexOf() function from the Apache Commons Lang library 

as the test subject, we conducted experiments to compare the quality and effectiveness of the test cases 

generated by each model. Our findings indicate that while generative AI can efficiently produce a substantial 

number of high-quality test cases, there are instances of incorrect test cases and test codes. To address these 

issues, we propose guidelines for developers to enhance the reliability and consistency of test case generation 

using generative AI. Future research will explore the application of these models to more complex software 

systems and further methods to improve their test generation capabilities. 
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1. Introduction 

In the field of software engineering, the necessity for applying generative AI has become increasingly 

prominent with the advancement of artificial intelligence technologies. Generative AI leverages natural 

language processing and deep learning techniques to enhance developer productivity across various domains 

such as code auto-generation, bug detection, and documentation [1]. These technologies contribute to 

increasing the efficiency of the software development process and providing innovative solutions. 

The application of generative AI is also essential in software testing. As the complexity of software systems 

increases, manually writing test cases has reached its limitations [2]. By utilizing generative AI, it is possible 

to automatically generate test cases for various scenarios, thereby strengthening quality assurance. Existing 

automation tools, based on limited patterns or rules, fail to encompass all complex situations [3]. In contrast, 
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generative AI can generate new test cases based on learned data, improving test coverage and depth. However, 

several issues exist in automatically generating test cases using generative AI, such as reliability, consistency, 

and difficulties in testing complex functionalities [4]. 

In this paper, we compare and analyze the test case generation capabilities of major generative AI models. 

We delve into boundary value analysis techniques, exception handling, and property-based testing. Through 

this, we evaluate how generative AI meets various testing requirements and identify its limitations. 

Additionally, we propose guidelines for generating consistent and effective test cases. This will provide 

practical assistance to developers in developing reliable software using generative AI.  

The main contributions of this paper are as follows: 

First, we systematically compare and analyze the test case generation capabilities of major generative AI 

models such as ChatGPT, Copilot, and Gemini. By doing this, we clearly identify the characteristics, strengths, 

and limitations of each model, evaluating the applicability of generative AI in the field of software testing. 

Second, we experimentally verify the effectiveness of applying generative AI to various testing techniques, 

including boundary value analysis, exception handling, and property-based testing. By assessing the quality of 

the generated test cases through code coverage and mutation testing, we provide evidence on whether 

generative AI can be effectively utilized in actual testing scenarios. 

Third, we present practical guidelines to address potential issues that may arise when generating test cases 

using generative AI. This contribution is expected to help developers effectively leverage generative AI to 

enhance the reliability and quality of software. 

The rest of the paper is organized as follows. Section 2 reviews related works. Section 3 describes the 

generative AI's test case generation capabilities, including experimental scenarios and analyses. Section 4 

presents a comparative analysis of the results and proposes guidelines. Finally, Section 5 summarizes and 

concludes the paper. 

 

2. Related Works 

Recent years have seen active research on the utilization of generative AI in the field of software testing. 

Generative AI possesses the ability to learn from large amounts of data and generate new data, and it is 

expected to bring revolutionary changes in the automatic generation of test cases [5]. 

Research on automatic generation of software test cases using generative AI can be broadly divided into 

black-box testing and white-box testing approaches. In black-box testing, test cases are generated based solely 

on inputs and outputs without knowledge of the internal structure of the system. Studies are underway to extract 

test cases from user requirements or specifications by leveraging the natural language processing capabilities 

of generative AI [6, 7]. For example, Utting et al. proposed a method to automatically generate test scenarios 

using generative techniques in model-based testing [8]. On the other hand, white-box testing considers the 

internal structure and logic of the code to generate test cases. In this area, research is being conducted to analyze 

source code using generative AI and explore paths where potential defects may occur [9, 10]. Specifically, 

Korel developed an automated test data generation technique for program path exploration [11]. 

Studies addressing the problems of automatic test case generation using generative AI are also being 

conducted. Wang et al. pointed out that due to biases in the training data, it is challenging to guarantee the 

quality and reliability of the test cases generated by generative AI models [4]. Zhang et al. mentioned the 

limitations of generative AI in sufficiently considering complex scenarios such as exception handling and 
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boundary conditions [12]. These issues arise because generative AI does not fully understand the deep 

semantics of the code or business logic. 

Other related research includes hybrid approaches that combine generative AI with existing testing 

techniques. McMinn introduced a method to enhance the efficiency and reliability of test cases by combining 

search-based software testing with generative AI [13]. Just et al. developed Defects4J, targeting software 

containing real defects, to generate test cases and evaluate testing techniques [14]. They contributed to 

detecting and correcting actual defects using generative AI. 

Based on these existing studies, this paper aims to analyze the current status and problems of automatic test 

case generation using the latest generative AI models and propose effective utilization strategies. 

 

3. Generative AI's Test Case Generation Capabilities 

This study assumes a specification-based unit test situation based on black-box testing. In this section, we 

compare and analyze the test case generation capabilities of representative generative AI models—ChatGPT, 

Copilot, and Gemini. The models of each generative AI are as follows: 

• OpenAI's ChatGPT (GPT-4o with Canvas model) 

• GitHub's Copilot (Based on the GPT-4o model, September 2024 version) 

• Google's Gemini (Gemini 1.5 Pro-002 model) 

As the test subject, we selected the indexOf() function of the ArrayUtils class included in the Apache 

Commons Lang library, and its specification is shown in Figure 1 [15]. 

 

Figure 1. Specification of ArrayUtils.indexOf() 

3.1 Test Case Generation According to Boundary Value Analysis 

With the specification of the indexOf() function, the prompt content for test case generation provided to the 

generative AI is shown in Figure 2.  

 

Figure 2. Prompt-1 for Test Case Generation 

 When the specification of ArrayUtils.indexOf() and the Prompt-1 are input into the generative AI, test cases 

like those in Figure 3 were generated (Some code omitted). 

public static int indexOf(boolean[] array, boolean valueToFind, int startIndex) 
; Finds the index of the given value in the array starting at the given index. This method returns INDEX_NOT_FOUND 

(-1) for a null input array. A negative startIndex is treated as zero. A startIndex larger than the array length will 
return INDEX_NOT_FOUND (-1). 

[Parameters] 
• array - the array to search through for the object, may be null 
• valueToFind - the value to find 
• startIndex - the index to start searching at 

[Returns] 
The index of the value within the array, INDEX_NOT_FOUND (-1) if not found or null array input. 

[Prompt-1] 
• You are an experienced Java program tester. There is a class called ArrayUtils that has an indexOf() 

function. The requirements for the function are described below. We are trying to test this function 
using specification-based testing without source code. Generate code that can be tested with JUnit. 
When writing JUnit test cases, please use the ParameterizedTest feature. 
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[ChatGPT] 
 

public class ArrayUtilsTest0 {     
public static Stream<Arguments>  

  provideTestArguments() { 

    return Stream.of(       
 Arguments.of(null,5,0,-1),       

 Arguments.of(new int[]{},5,0,-1),       

 Arguments.of(new int[]{1,2,3,4,5},3,0, 2),       
Arguments.of(new int[]{1,2,3,4,5},3,3,-1), 

 Arguments.of(new int[]{1,2,3,4,5},6,0,-1), 

 Arguments.of(new int[]{1,2,3,4,5},2,-1, 1), 
 Arguments.of(new int[]{1,2,3,4,5},1,10, -1), 

 Arguments.of(new int[]{1,2,3,4,5},4,2, 3) ); 

  } 
  @ParameterizedTest 

  @MethodSource("provideTestArguments") 

public void testIndexOf(int[] array, int  
   valueToFind, int startIndex, int expected){ 

    int result = ArrayUtils.indexOf(array,  

              valueToFind, startIndex); 
 assertEquals(expected, result); 

  } 

} 

[Copilot] 
 

public class ArrayUtilsTest0 { 
  @ParameterizedTest 

  @MethodSource("indexOfTestCases") 

void testIndexOf(int[] array,  
          int valueToFind, int startIndex,  

          int expected) { 

    assertEquals(expected,  
     ArrayUtils.indexOf(array, valueToFind,  

                     startIndex)); 

  } 
static Stream<Arguments>  

  indexOfTestCases() { 

    return Stream.of( 
      Arguments.of(null, 1, 0, -1),  

      Arguments.of(new int[]{1,2,3},2,-1,1),  

      Arguments.of(new int[]{1,2,3},2,5,-1),  
      Arguments.of(new int[]{1,2,3},2,0,1),  

      Arguments.of(new int[]{1,2,3},4,0,-1) 

    ); 
  } 

} 

[Gemini] 
 

public class ArrayUtilsTest0 { 
  ... 

  private static Stream<Arguments> 

indexOfTestCases() { 
    return Stream.of(        

 Arguments.of(null, 5, 0, -1), 

 Arguments.of(new int[]{},5,0,-1), 
 Arguments.of(new int[]{1,2,3,4,5},3,0,2), 

 Arguments.of(new int[]{1,2,3,4,5},1,0,0), 

 Arguments.of(new int[]{1,2,3,4,5},5,0,4), 
 Arguments.of(new int[]{1,2,3,3,5},3,0,2), 

 Arguments.of(new int[]{1,2,3,3,5},3,3,3), 

 Arguments.of(new int[]{1,2,3,4,5},6,0,-1), 
Arguments.of(new int[]{1,2,3,4,5},3,-1,2), 

 Arguments.of(new int[]{1,2,3,4,5},3,-2,2), 

 Arguments.of(new int[]{1,2,3,4,5},3,5,-1), 
 Arguments.of(new int[]{1,2,3,4,5},3,6,-1), 

 Arguments.of(new int[]{1,2,3,4,5},4,2,3), 

 Arguments.of(new int[]{1,2,3,4,5},4,3,3), 
 Arguments.of(new int[]{1,2,3,4,5},4,4,3),  

 Arguments.of(new int[]{1,2,3,4,5},5,4,4) ); } 

} 

Figure 3. Example of test code generated by generative AI for Prompt-1 

Despite entering the same request, the generative AI generated different test cases and test codes each time. 

Occasionally, incorrectly written test cases were included among the generated ones. For example, in Figure 

3, in the 15th test case generated by Gemini, "Arguments.of(new int[]{1,2,3,4,5}, 4, 4, 3)", where valueToFind 

is 4 and startIndex is 4, the indexOf() function should return -1 (INDEX_NOT_FOUND), but it incorrectly 

considered the result as 3.  

To diversify the test cases further, we explicitly added the application of the boundary value analysis 

technique to the existing Prompt-1 to create Prompt-2 and added default boundary values for each data type to 

create Prompt-3. The additional sentences in Prompt-2 and Prompt-3 are shown in Figure 4. 

[Prompt-2]  
• Please write test cases using combinations of boundary values of all inputs according to the 

Boundary Value Analysis technique. 

[Prompt-3]  
• Please write test cases using combinations of boundary values of all inputs according to the 

Boundary Value Analysis technique. 
• When setting the boundary values for the function inputs in the test cases, please add the 

following boundary values according to the input's data type: 
- int, short, byte, long type arguments: -1, 0, 1 
- String arguments: NULL, empty string, single-character string, multi-character string 
- Array arguments: NULL, empty array, single-element array, multiple-element array 

Figure 4. Additional Sentences in Prompts for Boundary Value Analysis 

Each generative AI was prompted with Prompt-1, Prompt-2, and Prompt-3 to generate test cases, and each 

prompt was repeated three times. To minimize the influence of previous test case generation results, a new 

conversation window was opened each time the prompt was entered. The number of test cases generated by 

repeated experiments and the number of incorrectly generated test cases are shown in Table 1. 
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Table 1. Number of Generated Test Cases and Errors 

  Prompt #  

Try -1 Try -2 Try -3 Average 

# of 
test-
case 

# of wrong 
test-case 

# of 
test-
case 

# of 
wrong 

test-case 

# of 
test-
case 

# of 
wrong 

test-case 

# of 
test-
case 

# of 
wrong 

test-case 

ChatGPT 

Prompt-1 8 0 13 0 8 0 9.67  0.00  

Prompt-2 12 1 13 0 16 0 13.67  0.33  

Prompt-3 19 0 15 0 20 0 18.00  0.00  

Copilot 

Prompt-1 7 0 5 0 7 0 6.33  0.00  

Prompt-2 13 0 21 0 13 0 15.67  0.00  

Prompt-3 20 0 15 0 11 0 15.33  0.00  

Gemini 

Prompt-1 16 1 12 0 12 0 13.33  0.33  

Prompt-2 21 0 16 0 12 0 16.33  0.00  

Prompt-3 36 0 30 3 28 0 31.33  1.00  

The results showed that the number of test cases generated generally increased as more test case-related 

requests were added to the prompt content input into the generative AI. Assuming that the ArrayUtils.indexOf() 

function code has no errors, most of the test cases generated by the generative AI were correct, but occasionally 

some incorrect test cases were generated. In the case of ChatGPT, 1 out of 39 generated test cases was 

incorrectly generated, and Gemini generated 4 incorrect test cases out of 73. 

3.2 Test Case Generation with Exception Objects  

To evaluate the ability to generate test cases for functions that throw exceptions, we modified the 

specification of ArrayUtils.indexOf() so that it throws a RuntimeException("Invalid argument") when the array 

argument is null or the startIndex argument is negative, and we created Prompt-4 accordingly. When Prompt-

4 was input, the generative AI generated test cases for the modified ArrayUtils.indexOf() and also generated 

test codes handling the Exception object. The experimental results are shown in Table 2. 

Table 2. Exception Handling Test Case Generation Results 

  Prompt #  

Try-1 Try-2 Try-3 Average 

# of 
test-
case 

# of wrong 
test-case 

# of 
test-
case 

# of 
wrong 

test-case 

# of 
test-
case 

# of 
wrong 

test-case 

# of 
test-
case 

# of 
wrong 

test-case 

ChatGPT Prompt-4 8 2 13 0 12 0 11 0.67 

Copilot Prompt-4 9 0 13 0 15 0 12.33 0 

Gemini Prompt-4 155 0 96 0 18 2 89.67 0.67 

The generative AI wrote test cases for functions that throw exceptions well. However, some errors were 

found in ChatGPT and Gemini. The two errors that occurred in ChatGPT's Try-1 were not due to incorrectly 

generated test cases but errors that occurred in the test code executing the test cases. In Gemini's Try-3, the 

two errors were cases where INDEX_NOT_FOUND was incorrectly used as the expected result instead of the 

RuntimeException object. 

Interestingly, in Gemini's Try-1 and Try-2, a significantly large number of test cases were generated. In 

these cases, Gemini did not simply generate an array of test cases but generated test codes that dynamically 

create test cases by defining arrays of boundary values for each input (array, valueToFind, startIndex) and 

combining elements of these arrays. 
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3.3 Property-Based Testing Technique 

Property-based testing is a method that focuses on testing specific properties or characteristics of software, 

aiming to verify not only functional requirements but also non-functional attributes such as performance, 

security, and reliability. This method dynamically generates many test cases based on properties to confirm 

that the system behaves as expected under various inputs and conditions, effectively identifying potential 

defects or areas for improvement. However, writing property-based tests is significantly more challenging than 

example-based tests. 

In this study, we experimented to see if generative AI can effectively write property-based test codes. For this 

purpose, we modified Prompt-1 by replacing the requirement for JUnit with the property-based testing 

framework jqwik [16]. Prompt-5 for property-based test code generation is shown in Figure 5. 

Figure 5. Prompt-5 for Property-Based Testing 

The generative AI received Prompt-5 and, understanding the characteristics of the function, generated 

functions that dynamically test each property. The generated test functions are shown in Figure 6. 

[ChatGPT] 

• testNullArrayReturnsIndexNotFound 

• testNegativeStartIndexIsTreatedAsZero 

• testStartIndexGreaterThanArrayLength

ReturnsIndexNotFound 

• testValueFoundInArray 

• testValueNotFoundInArray 

• testIndexOfWithValidStartIndex 

[Copilot] 

• testNullArray 

• testNegativeStartIndex 

• testStartIndexLargerThanArrayLength 

• testValuePresentInArray 

• testValueNotPresentInArray 

[Gemini] 

• nullArray 

• emptyArray 

• negativeStartIndex 

• startIndexGreaterThanLength 

• valueFound 

• valueNotFound 

• startIndexWithinRangeValueFound 

Figure 6. Property-Based Test Functions Generated by Generative AI 

Property-based test functions generate 1,000 test cases with random combinations of input values and, after 

filtering out those that do not meet preconditions, proceed with testing using test cases that meet the conditions. 

That is, not all of the 1,000 generated test cases are used for function testing. 

In most cases, testing proceeded smoothly, and hundreds of test cases that met the preconditions passed for 

each property-based test function. However, some issues were found in the experimental results. First, in 

ChatGPT's testIndexOfWithValidStartIndex() function, when 1,000 test cases were generated randomly, more 

than 870 did not meet the preconditions, causing an error in jqwik. This can be resolved by adjusting the 

generation range of the parameters used in the combinations. Second, in Copilot's 

testValueNotPresentInArray() function, test cases that did not meet the preconditions among the randomly 

generated test cases should be filtered out, but they were incorrectly considered as test failures. This is a clear 

error in Copilot's generation of the property-based test function. Lastly, in Gemini's valueFound() and 

startIndexWithinRangeValueFound() functions, when the size of the randomly generated array argument was 

smaller than the startIndex, it was not properly filtered, causing an ArrayIndexOutOfBoundsException. This is 

also an error in Gemini's generation of the property-based test function. 

 

[Prompt-5] 
• (same as Prompt-1) 
• Please generate code that can be tested using jqwik, a property-based testing framework. 
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4. Comparative Analysis  

Generative AIs can generate example-based test cases and property-based test code based on function 

specifications for unit testing, and have shown that the generated test cases and test code mostly work correctly. 

However, the fact that test cases function properly does not guarantee the quality of the test cases. 

In this paper, we used two methods to verify the quality of the test cases created by generative AIs. One is 

to measure the code coverage of the ArrayUtils.indexOf() function for each test suite, and the other is to 

perform mutation testing by deliberately inserting bugs into the ArrayUtils.indexOf() function. The actual code 

of the ArrayUtils.indexOf() function is shown in Figure 7. 

 

Figure 7. Source Code of ArrayUtils.indexOf() 

4.1 Code Coverage Measurement 

Code coverage is a software testing metric that measures how much of the source code is executed when a 

specific test suite runs. It helps identify untested parts of the code, discover potential bugs, and improve 

software quality. To measure code coverage, we used the open-source library JaCoCo [17]. JaCoCo executes 

the test suite and provides a coverage report showing executed instructions, missed instructions, and missed 

branches. 

A total of 27 test suites were written, with each of the three generative AI models generating test suites three 

times (Try-1, Try-2, Try-3) for the three prompts (Prompt-1, Prompt-2, Prompt-3). After measuring the code 

coverage of the written test suites, all test suites—including Copilot/Prompt-1/Try-2, which had the fewest test 

cases—showed a 100% coverage rate. This is considered to be because the code of the ArrayUtils.indexOf() 

function does not have complex branching, and the loop statements are written in a simple form. 

4.2 Mutation Testing 

Mutation testing is a software testing technique where small changes or errors are intentionally injected into 

the source code to evaluate whether existing test cases can detect these changes or fail, thereby measuring the 

effectiveness and completeness of the tests. For testing, we wrote four mutated versions by modifying parts of 

the code of ArrayUtils.indexOf(), and the changes in each version are shown in Table 3. 

Table 3. Code Modifications for Mutation Testing 
Version Line # Original code Modified code 

(a) 4 if (array == null) if (array != null) 

(b) 6 if ( startIndex < 0 ) if ( true || startIndex ) 

01:  public class ArrayUtils { 

02:     private static final int INDEX_NOT_FOUND = -1; 

03:     public static int indexOf(final int[] array, final int valueToFind, int startIndex) { 

04:       if (array == null)  

05:         return INDEX_NOT_FOUND;  

06:       if (startIndex < 0)   

07:         startIndex = 0; 

08:       for (int i = startIndex; i < array.length; i++ )  

09:         if (valueToFind == array[i]) return i; 

10:       return INDEX_NOT_FOUND; 

11:     } 

12:  } 
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(c) 7 startIndex = 0 startIndex = 1 

(d) 8 i++ i-- 

The test results for the four mutated codes showed that mutation versions (a), (b), and (d) all failed in all 27 

test suites shown in Table 3. This indicates that the test suites effectively detected the intentionally inserted 

bugs. 

In the case of mutation version (c), many test suites failed to detect the bug. Excluding the incorrectly 

generated test cases, after executing a total of 27 test suites, 13 test suites did not detect the bug and passed the 

tests. Unlike example-based testing, the test codes generated in Prompt-4, which perform property-based 

testing, all detected the bug in the mutated code. 

Table 4. Test Suite Execution Results for Mutated Code (c) 

  Prompt #  Try-1 Try-2 Try-3 

ChatGPT 

Prompt-1 P P P 

Prompt-2 P P F 

Prompt-3 P P P 

Copilot 

Prompt-1 P P P 

Prompt-2 F F F 

Prompt-3 F F P 

Gemini 

Prompt-1 P F F 

Prompt-2 F F F 

Prompt-3 F F F 

                             * P: pass, F: Fail   

4.3 Analysis Results and Guidelines 

After analyzing the test case generation capabilities of major generative AIs, we found that they efficiently 

produce test cases at a considerable level. While there are still instances where incorrect test cases or test code 

are generated, the proportion is minimal (1% to 6%) and is deemed to be within an acceptable range. 

The analysis results are as follows: 

• The number of generated test cases varies depending on the content of the prompt input.   

; Specifying techniques like boundary value analysis resulted in generating more test cases than general 

test case generation requests. 

• The error rate of test cases generated by generative AI (example-based) was about 1%~6%. 

; Since most of the errors can be easily corrected, the usefulness of the generated test cases is sufficient. 

• The quality of the test cases was found to be excellent. 

; Although the function used in the experiment is simple, all generated test suites measured a code 

coverage rate of 100%. In mutation testing, the detection rate was low (51.9%) in example-based testing 

but was 100% in property-based testing. 

Based on the analysis results, we propose the following guidelines for test case generation using generative 

AI: 

• Guideline 1: Explicitly include specific testing techniques in the prompt content when generating test 

cases. 

; Request the generation of test cases using combinations of boundary values for each argument by 

specifying techniques like boundary value analysis. 

• Guideline 2: Consider that the generated test cases and test codes may contain errors. 
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; If an error occurs after executing the test cases, review whether it is due to an error in the test case 

itself. 

• Guideline 3: Combine example-based testing with property-based testing. 

; For subtle bugs, example-based testing may not be sufficient. Specify property-based test code 

generation frameworks and request test code generation based on them. 

5. Conclusion 

In this study, we conducted an in-depth analysis of the current state and challenges of automatic software 

test case generation using generative AI. By comparing the test case generation capabilities of major generative 

AI models such as ChatGPT, Copilot, and Gemini, we confirmed that generative AI can efficiently generate a 

considerable number of test cases with high quality. In particular, test case generation that considers boundary 

value analysis techniques and exception handling showed high accuracy and comprehensiveness. 

However, we found that some incorrect test cases or test codes can be generated, and that techniques such 

as property-based testing need to be used in parallel to fully detect subtle bugs. To address these issues, this 

paper presented specific guidelines to help developers effectively utilize generative AI. 

These guidelines are expected to enhance the utilization of generative AI and contribute to improving the 

reliability and quality of software. Future research will involve an in-depth analysis of generative AI's test case 

generation capabilities for more complex software systems and seek methods to improve reliability and 

consistency.  
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