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A COMPREHENSIVE GENERALIZATION OF CLASSICAL

FIBONACCI SEQUENCES, BINET FORMULA AND

IDENTITIES

K.L. VERMA

Abstract. This article presents a fundamental generalization of the clas-
sical Fibonacci sequence. We introduce a general 2nd order recurrence

relation, Vn = pVn−1 + qVn−2, q ̸= 0, n ≥ 2, with initial terms V0(=

a), V1(= b), a, b, p, and q are any non-zero real numbers. We derive an
explicit generalized form of the generating function and comprehensive Bi-

net’s formula, which comprehend this concept to various sequences that

follow similar recurrence relations. Furthermore, we analyze more gen-
eralized and specialized cases, uncovering new and existing identities for

well-known sequences such as Fibonacci, Lucas, Pell, Pell-Lucas, Goksal
Bilgici, and others. Our analysis implicitly reveals identities like Cassini’s,

Catalan’s, d’Ocagne’s, and Gelin-Cesàro in the generalized form. Addi-

tionally, tabular and graphical representations are provided to illustrate
the relationships between the terms of these sequences.
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1. Introduction

In the realm of mathematics, the most intriguing number sequence is the
classical Fibonacci sequence. For both amateur mathematicians and profession-
als seeking innovative insights, it continues to offer numerous opportunities due
to its wonderful and incredible properties [11]. Several generalizations of the
classical Fibonacci sequence are available in the literature, achieved either by
altering the initial conditions [2, 7, 9, 10, 11, 15, 21] or by modifying the re-
currence relation [4, 12, 13, 14, 16, 17, 18, 20, 22, 23]. Among them, sequences
generated by recurrence relations stand out as the most prominent paradigms of
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recursive sequences. Classical Fibonacci, Lucas, Pell, Pell-Lucas, modified Pell
sequences, and their generalizations possess several fascinating properties and
find applications in numerous areas of pure and applied mathematical sciences,
such as graph theory [6, 10], algebra [19, 5], quasi crystals [19, 3] and computer
algorithms [18, 1, 19]. The well-known Fibonacci sequence is defined by the
recurrence relation and initial conditions are as follows:

Fn = Fn−1 + Fn−2, n ≥ 2, F0 = 0, F1 = 1.

In this paper, both the initial terms and the recurrence relation are considered
in their generalized forms, as described in the following definition.

Definition 1.1. We define a generalization of the Classical Fibonacci sequence
{Vn}∞n=0 by the following recurrence relations:

Vn = pVn−1 + qVn−2 (1)

with the initial conditions,V0 = a, V1 = b, where a, b, p, and q are any non-zero
real numbers. This formula (1) holds true for every integer n ≥ 2.

Ten terms of Generalized Fibonacci sequences

Figure 1. First ten terms of the sequence (1) and the
corresponding terms of the classical Fibonacci sequence

Utilizing (1), the first ten terms of the sequence are displayed in Figure1. On
substituting a = 0, b = 1, p = 1, and q = 1 into these terms of Figure1 yields
the first 10 terms of the classical Fibonacci sequence. Likewise, terms of the
others existing known sequences can be obtained by substituting the analogous
values of a, b, p, and q. In the literature [8, 11], numerous generalizations of
Fibonacci sequences exist. Among them, some of the recognized generalizations
with recurrence relations and initial conditions are as follows:
The Lucas sequence
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Ln = Ln−1 + Ln−2, n ≥ 2, L0 = 2, L1 = 1.

The Pell sequence

Pn = 2Pn−1 + Pn−2, n ≥ 2,,P0 = 2, P1 = 1.

The Modified Pell sequence

qn = 2qn−1 + qn−2, n ≥ 2,,q0 = 1, q1 = 1.

The Pell-Lucas sequence

Qn = 2Qn−1 +Qn−2, n ≥ 2, Q0 = 2, Q1 = 2.

The Goksal Bilgici sequences

fn = 2sqn−1 + (t2 − s)qn−2, n ≥ 2,q0 = 0, q1 = 1.

and

ln = 2sln−1 + (t2 − s)ln−2, n ≥ 2, l0 = 2, l1 = 2s.

The Jacobsthal sequences

Jn = Jn−1 + 2Jn−2, n ≥ 2, J0 = 0, J1 = 1.

The Jacobsthal-Lucas sequences

Ln = Ln−1 + 2Jn−2, n ≥ 2, L0 = 2, L1 = 1.

Evidently, for (p, q) = (1, 1) and (a, b) = (1, 1) , (p, q) = (1, 1) and (a, b) =
(2, 1) , (p, q) = (2, 1) and (a, b) = (2, 1) , (p, q) = (2, 1) and (a, b) = (2, 2) ,
(p, q) = (1, 2) and (a, b) = (0, 1) , (p, q) = (1, 2) and (a, b) = (2, 1) and (p, q) =(
2s, t2 − s

)
and (a, b) = (0, 1) , (p, q) =

(
2s, t2 − s

)
and (a, b) = (2, 2s) , where

s and t are any non – zero real numbers, the sequence {Vn} defined in (1) re-
duces the Classical Fibonacci, Lucas, Pell, Modified Pell, Pell-Lucas Jacobsthal,
Jacobsthal-Lucas and Goksal Bilgici sequences respectively.

2. Main results

The explicit Generalized Generating function of the sequence defined in
(1).

Theorem 2.1 (Generalized Generating Functions). The generalized generating
function of the sequence defined in (1) is

∞∑
n=0

Vnx
n =

V0 + (V1 − pV0)x

(1− px− qx2)
=

a+ (b− pa)x

(1− px− qx2)
.

Proof. Let

V (x) =

∞∑
n=0

Vnx
n, (2)

pxV (x) = px

∞∑
n=0

Vnx
n (3)

qx2V (x) = qx2
∞∑

n=0

Vnx
n (4)
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Then (2)-(3)-(4) gives(
1− px− qx2

)
V (x) = V0 + (V1 − pV0)x

Hence
∞∑

n=0

Vnx
n =

V0 + (V1 − pV0)x

(1− px− qx2)
=

a+ (b− pa)x

(1− px− qx2)
. (5)

□

2.1. Special Cases of the generating function). Case 1: Fibonacci se-
quences Substituting p = 1, q = 1 and V0 = F0 = 0, V1 = F1 = 1 in (5),
subsequently, the generating function in (5) simplifies to:

Fn = Fn−1 + Fn−2 (Vn = pVn−1 + pVn−2), n ≥ 2 is
∞∑

n=0

Fnx
n =

F0 + (F1 − pF0)x

(1− px− qx2)
=

1

(1− x− x2)
. (6)

Therefore, (6) represents the generating function for the well-known classical
Fibonacci sequences.
Case 2: Lucas sequence
Substituting p = 1, q = 1 and V0 = l0 = 2, V1 = l1 = 1 in (5), then the
generating function in (5), simplifies to:

ln = 2ln−1 + ln−2, n ≥ 2 is
∞∑

n=0

lnx
n =

2− x

(1− x− x2)
. (7)

Thus (7) is in agreement with the generating function for Lucas sequence.
Case 3: Pell sequence
Substituting p = 2, q = 1 and V0 = P0 = 0, V1 = P1 = 1 in (5), then the
generating function in (5), simplifies to:

Pn = 2Pn−1 + Pn−2, n ≥ 2 is
∞∑

n=0

Pnx
n =

1

(1− 2x− x2)
. (8)

Thus (8) is in agreement with the generating function for Pell sequence.
Case 4:Modified Pell sequence
Substituting p = 2, q = 1 and V0 = f0 = 1, V1 = f1 = 1 in (5), then the
generating function in (5), simplifies to:

fn = 2fn−1 + fn−2, n ≥ 2 is
∞∑

n=0

fnx
n =

1− x

(1− 2x− x2)
. (9)

Thus (9) is in agreement with the generating function for Modified Pell sequence.
Case 5: Pell-Lucas sequence Substituting p = 2, q = 1 and V0 = Q0 = 2, V1 =
Q1 = 2 in (5),then the generating function in (5), simplifies to:



A comprehensive generalization of classical Fibonacci sequences, Binet formula ... 287

Qn = 2Qn−1 +Qn−2, n ≥ 2 is
∞∑

n=0

fnx
n =

2− 2x

(1− 2x− x2)
. (10)

Thus (10) is in agreement with the generating function for Pell-Lucas sequence.
Case 6: Goksal Bilgici sequences
Substituting p = 2a, q = b− a2 and V0 = f0 = 0, V1 = f1 = 1
and p = 2a, q = b − a2 and V0 = l0 = 2, V1 = l1 = 2a in (5), then the corre-
sponding generating functions for the Goksal Bilgici sequences are:

fn = 2afn−1 + (b− a2)fn−2, n ≥ 2
and

ln = 2aln−1 + (b− a2)ln−2, n ≥ 2 are
∞∑

n=0

fnx
n =

x

(1− 2ax− (b− a2)x2)
. (11)

and

∞∑
n=0

lnx
n =

2− 2ax

(1− 2ax− (b− a2)x2)
. (12)

Thus (11) and (12) are in agreement with the generating function for the
well-known Goksal Bilgici sequences.
Case 7: Jacobsthal Sequences Substituting p = 1, q = 2 and V0 = J0 = 0, V1 =
J1 = 1 in (5), then the corresponding generating functions for the Jacobsthal
sequence is

∞∑
n=0

Jnx
n =

x

(1− x− 2x2)
. (13)

Case 8: Jacobsthal-Lucas Sequences Substituting p = 1, q = 2 and V0 = J0 =
2, V1 = J1 = 1 in (5), then the corresponding generating functions for the
Jacobsthal-Lucas sequence is

∞∑
n=0

Jnx
n =

2− x

(1− x− 2x2)
. (14)

□

3. Binet’s Formula for the Generalized Fibonacci Sequence

The following theorem gives the generalized form of Binet formula for the
sequence defined in (1).

Theorem 3.1 (Generalized Binet’s formula). The generalized Binet’s formula
for the sequence defined in (1) is

Vn = V0

(
αn+1 − βn+1

α− β

)
+ (V1 − pV0)

(
αn − βn

α− β

)
,
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where α, β =
p±

√
p2+4q

2 are the roots of the equation x2 − px− q = 0.

Proof. Consider partial fraction decomposition of the right-hand side of the gen-
erating function (5) of the sequence defined in (1)

V0 + (V1 − pV0)x

(1− px− qx2)
≡ (αV0 + V1 − pV0)

(α− β) (1− αx)
− (βV0 + V1 − pV0)

(α− β) (1− βx)

. On simplification we have

=
V0

(α− β)

[
α

(1− αx)
− β

(1− βx)

]
+

(V1 − pV0)

(α− β)

[
1

(1− αx)
− 1

(1− βx)

]
we have

∞∑
n=0

Vnx
n =

[
V0

(
αn+1 − βn+1

α− β

)
+ (V1 − pV0)

(
αn − βn

α− β

)]
xn. (15)

Thus the generalized form of the Binet formula for the generalized Fibonacci
sequence {Vn}∞n=0 is

Vn = V0

(
αn+1 − βn+1

α− β

)
+ (V1 − pV0)

(
αn − βn

α− β

)
(16)

where α and,β are the roots of the equation x2 − px− q = 0. defined in (1). □

3.1. Special Cases of Binet formula. Case 1: Fibonacci sequences

Substitute p = 1, q = 1 and V0 = F0 = 0, V1 = F1 = 1 in (16), we have

Vn = 0

(
αn+1 − βn+1

α− β

)
+ (1− 0)

(
αn − βn

α− β

)

Fn =

(
αn − βn

α− β

)
, α, β =

1±
√
5

2
. (17)

Thus (17), is the Binet’s formula for the classical Fibonacci sequence.
Case 2: Lucas sequence
Substitute p = 1, q = 1 and V0 = l0 = 2, V1 = l1 = 1 in (16), then the Binet’s
formula for the Lucas sequence (5),is

ln = 2

(
αn+1 − βn+1

α− β

)
+ (1− 2)

(
αn − βn

α− β

)
which is simplifies to

ln = αn + βn, . (18)

where α, β = 1±
√
5

2 . Thus (18) is the Binet’s formula for the for Lucas sequence.
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Case 3: Pell sequence
Substitute p = 2, q = 1 and V0 = P0 = 0, V1 = P1 = 1 for Pell sequence
Pn = 2Pn−1 + Pn−2, n ≥ 2 in (16), we have

Pn = 0

(
αn+1 − βn+1

α− β

)
+ (1)

(
αn − βn

α− β

)
then the Binet’s formula for the Pell sequence(5),

Pn =
αn − βn

α− β
, α, β = 1±

√
2. (19)

Thus (19) is in agreement with the Binet’s formula for Pell sequence.

Case 4:Modified Pell sequence
Substitute p = 2, q = 1 and V0 = f0 = 1, V1 = f1 = 1 in (16), then the Binet’s
formula for the modified Pell sequence fn = 2fn−1 + fn−2, n ≥ 2 then we have
in (16), we have

qn = 1

(
αn+1 − βn+1

α− β

)
+ (1)

(
αn − βn

α− β

)
, which is simplifies to

qn = αn + βn, α, β = 1±
√
2 (20)

Thus (20) is in agreement with the Binet’s formula for Modified Pell sequence.
Case 5: Pell-Lucas sequence
Substitute p = 2, q = 1 and V0 = Q0 = 2, V1 = Q1 = 2 in (16), then the Binet’s
formula in for the Pell-Lucas sequence Qn = 2Qn−1+Qn−2, n ≥ 2 then we have

Qn = 2

(
αn+1 − βn+1

α− β

)
+ (2− 4)

(
αn − βn

α− β

)
,

⇒ Qn = 2

[(
αn+1 − βn+1

α− β

)
−
(
αn − βn

α− β

)]
= 2qn, α, β = 1±

√
2. (21)

Thus (21) is in agreement with the Binet’s formula for Pell-Lucas sequence.
Case 6: Goksal Bilgici sequences

Substitute p = 2a, q = b− a2 and V0 = f0 = 0, V1 = f1 = 1
and p = 2a, q = b − a2 and V0 = l0 = 2, V1 = l1 = 2a in (16), then the
corresponding Binet’s formula for the Goksal Bilgici sequences are

fn = 0.

(
αn+1 − βn+1

α− β

)
+ (1− 2a.0)

(
αn − βn

α− β

)
and

ln = 2.

(
αn+1 − βn+1

α− β

)
+ (2a− 4a)

(
αn − βn

α− β

)
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where
∵ α± β = a±

√
b

.

fn =
αn − βn

α− β
. (22)

and
ln = αn + βn (23)

Thus (22) and (23) are in agreement with the Binet’s formul for the Goksal
Bilgici sequences. Case 7: Jacobstal sequence
Substitute p = 1, q = 2 and V0 = J0 = 0, V1 = J1 = 1
in (16), then the corresponding Binet’s formula for the Jacobstal sequence is

Ln = 2.

(
αn+1 − βn+1

α− β

)
−αn − βn

α− β
Ln = αn+βn ( ∵ 2α-1=3, 2β-1=-3, α-β=3) .

(24)
Here α, β are roots of the equation x2 − x − 2 = 0, this formula is the same as
is in [8].

Case 8: Jacobstal-Lucas sequence
Substitute p = 1, q = 2 and V0 = J0 = 2, V1 = J1 = 1
in (16), then the corresponding Binet’s formula for the Jacobstal-Lucas sequence
is

Ln = αn + βn ( ∵ 2α-1=3, 2β-1=-3, α-β=3) (25)

Here α, β are roots of the equation x2 − x − 2 = 0, this formula is the same as
is in [8].

Table 1. Generating and Binet’s formulas of some of
the well known sequences as special cases of this

generalized Vn = pVn−1 + qVn−2 sequence,V0(= a), V1(= b),
a, b, p, and q

Sequence, Initial conditions
Constant Coefficients

nth term Generating function Binet’s formula

Generalized Sequence
V0(= a), V1(= b),
a, b, p, q are arbitrary

Vn = pVn−1 + qVn−2

∞∑
n=0

Vnx
n = V0+(V1−pV0)x

(1−px−qx2) = a+(b−pa)x
(1−px−qx2) . Vn = V0

(
αn+1−βn+1

α−β

)
+ (V1 − pV0)

(
αn−βn

α−β

)
Classical Fibonacci
F0(= 0), F1(= 1)
p = 1, q = 1

Fn = Fn−1 + Fn−2

∞∑
n=0

Fnx
n = 1

(1−x−x2) . Fn =
(

αn−βn

α−β

)
, α, β = 1±

√
5

2

Lucas
l0(= 2), l1(= 1)
p = 2, q = 1

ln = 2ln−1 + ln−2

∞∑
n=0

lnx
n = 2−x

(1−x−x2) ln = αn + βn,

Pell sequence
P0(= 2), P1(= 1)
p = 2, q = 1

Pn = 2Pn−1 + Pn−2

∞∑
n=0

Pnx
n = 1

(1−2x−x2) Pn = αn−βn

α−β , α, β = 1±
√
2

Modified Pell sequence
V0(= 1), V1(= 1)
p = 2, q = 1

Vn = 2Vn−1 + Vn−2

∞∑
n=0

Vnx
n = 1−x

(1−2x−x2) Vn = αn + βn, α, β = 1±
√
2

Pell-Lucas sequence
Q0(= 2), Q1(= 2)
p = 2, q = 1

Qn = 2Qn−1 +Qn−2

∞∑
n=0

Qnx
n = 2−2x

(1−2x−x2) Qn = 2qn, α, β = 1±
√
2

Goksal Bilgici sequence-1st
f0(= 0), f1(= 1)
p = 2s, q = (t2 − s)

fn = 2sfn−1 + (t2 − s)fn−2

∞∑
n=0

fnx
n = x

(1−2ax−(b−a2)x2) fn = αn−βn

α−β

Goksal Bilgici sequence-2nd
l0(= 2), l1(= 2s)
p = 2s, q = (t2 − s)

ln = 2sln−1 + (t2 − s)ln−2

∞∑
n=0

lnx
n = 2−2ax

(1−2ax−(b−a2)x2) ln = αn + βn
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Jacobsthal sequences
J0(= 0), J1(= 1)
p = 1, q = 2

Jn = Jn−1 + 2Jn−2

∞∑
n=0

Jnx
n = x

(1−x−2x2) Ln = αn + βn ( ∵ 2α-1=3, 2β-1=-3, α-β=3) .

Jacobsthal-Lucas sequences
L0(= 2), L1(= 1)
p = 1, q = 2

Ln = Ln−1 + 2Ln−2

∞∑
n=0

Lnx
n = 2−x

(1−x−2x2) Ln = αn + βn, ( ∵ 2α-1=3, 2β-1=-3, α-β=3)

4. Generalized Identities

Theorem 4.1. For every integer n, in the sequence defined in (1) is

V−n =
1

(−q)
n

[
Vn − (2V1 − pV0)

(
αn − βn

α− β

)]
where Vn, α, β are the roots of the equation x2 − px− q = 0. are defined in (16).

Proof. Using the generalized Binet formula (16) and replacing n with −n in it
we have

V−n = V0

(
α−n+1 − β−n+1

α− β

)
+ (V1 − pV0)

(
α−n − β−n

α− β

)
, (26)

Now
α−n − β−n

α− β
= − 1

(−q)
n

(
αn − βn

α− β

)
∵ αβ = −q (27)

(
α−n+1 − β−n+1

α− β

)
= − 1

(−q)
n

(
p

(
αn − βn

α− β

)
−

(
αn+1 − βn+1

α− β

))
(28)

using

α2 = αp+ q, β2 = βp+ q

. Using (27) and (28) in (26), we have

V−n =
1

(−q)
n

[
Vn − (2V1 − pV0)

(
αn − βn

α− β

)]
(29)

□

Corollary 4.2 (Fibonacci). If p = 1, q = 1 and V0 = F0 = 0, V1 = F1 = 1 in

(29), then it reduces to F−n = (−1)
n+1

Fn.

Proof. On substituting p = 1, q = 1 and V0 = F0 = 0, V1 = F1 = 1 in (29) we
have

V−n =
1

(−q)
n

[
Vn − (2V1 − pV0)

(
αn − βn

α− β

)]
F−n =

1

(−1)
n [Fn − (2− 0)Fn]

F−n =
1

(−1)
n [−Fn] = (−1)

n+1
Fn. (30)

Thus (30) is the corresponding identity for the classical Fibonacci sequence. □
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Corollary 4.3 (Lucas). If p = 1, q = 1 and V0 = l0 = 2, V1 = l1 = 1 in (29),

then (29) reduces to l−n = (−1)
−n

ln.

Proof. On substituting p = 1, q = 1 and V0 = l0 = 2, V1 = l1 = 1 in (29),in we
have

l−n =
1

(−1)
n

[
ln − (2− 2)

(
αn − βn

α− β

)]
l−n = (−1)

−n
ln (31)

Thus (31) is the corresponding identity for the Lucas sequence. □

Corollary 4.4 (Pell). If p = 1, q = 1 and V0 = P0 = 2, V1 = P1 = 1 in (29),

then (29) reduces to P−n = (−1)
n+1

Pn.

Proof. On substituting p = 1, q = 1 and V0 = P0 = 2, V1 = P1 = 1 in (29), in
we have

V−n =
1

(−q)
n

[
Vn − (2V1 − pV0)

(
αn − βn

α− β

)]
P−n =

1

(−1)
n [Pn − 2Pn] = (−1)

n+1
Pn. (32)

Thus (32) is the corresponding identity for the Pell sequence. □

Corollary 4.5 (Modified Pell). If p = 2, q = 1 and V0 = q0 = 1, V1 = q1 = 1
in (29), then (29) reduces to q−n = (−1)

n
qn.

Proof. On substituting p = 2, q = 1 and V0 = q0 = q, V1 = q1 = 1 in (29),in we
have

q−n =
1

(−1)
n

[
qn − (2− 2)

(
αn − βn

α− β

)]
q−n = (−1)

−n
qn (33)

Thus (33) is the corresponding identity for the Modified Pell sequence. □

Corollary 4.6 (Pell-Lucas). If p = 2, q = 1 and V0 = Q0 = 2, V1 = Q1 = 2 in
(29), then (29) reduces to Q−n = (−1)

n
Qn.

Proof. On substituting p = 2, q = 1 and V0 = Q0 = 2, V1 = Q1 = 2 in (29), we
have

Q−n =
1

(−1)
n

[
Qn − (4− 4)

(
αn − βn

α− β

)]
Q−n = (−1)

−n
Qn (34)

Thus (34) is the corresponding identity for the Pell-Lucas sequence. □

Corollary 4.7 (Goksal Bilgici). If p = 2a, q = b − a2 and V0 = f0 = 0, V1 =
f1 = 1
and p = 2a, q = b−a2 and V0 = l0 = 2, V1 = l1 = 2a in (29), then (29) reduces
to f−n = − 1

(b−a2)n fn and l−n = − 1
(b−a2)n ln.
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Proof. Substituting p = 2a, q = b− a2 and V0 = f0 = 0, V1 = f1 = 1
and p = 2a, q = b− a2 and V0 = l0 = 2, V1 = l1 = 2a in (29, we have

f−n =
1

(b− a2)
n

[
fn − 2

(
αn − βn

α− β

)]
and

l−n =
1

(a2 − b)
n

[
ln − (4a− 4a)

(
αn − βn

α− β

)]
f−n =

−1

(b− a2)
n fn, (35)

and

l−n =
−1

(b− a2)
n ln, (36)

Thus (35) and (36) are the corresponding identity for the Goksal Bilgici se-
quences. □

Theorem 4.8 (Cassini identity). For every integer n, for the sequence defined
in (1). Then

Vn+1Vn−1 − V 2
n = (−q)

n−1 [
qV 2

0 + (α+ β)V0V1 − V1
2
]

. Here α+ β = p.

Proof. Using the definition in (1) and the generalized Fibonacci sequence (16)
we have

Vn+1Vn−1 − V 2
n = (−q)

n−1 [
qV 2

0 + (α+ β)V0V1 − V1
2
]

(37)

The above result can be written as

Vn+1Vn−1 − V 2
n = (−q)

n−1 [
qa2 + pab− b2

]
, α+ β = p.

□

Corollary 4.9 (Fibonacci). If p = 1, q = 1 and V0 = F0 = 0, V1 = F1 = 1 in
(??), then it reduces to

Fn+1Fn−1 − Fn
2 = (−1)

n
. (38)

Corollary 4.10 (Lucas). If p = 1, q = 1 and V0 = l0 = 2, V1 = l1 = 1 in (37),
then it reduces to

ln+1ln−1 − l2n = 5(−1)
n−1

(39)

Corollary 4.11 (Pell). If p = 1, q = 1 and V0 = P0 = 2, V1 = P1 = 1 in (37),
then (37) reduces to

Pn+1Pn−1 − P 2
n = 5(−1)

n−1
(40)

Corollary 4.12 (Modified Pell). If p = 2, q = 1 and V0 = q0 = 1, V1 = q1 = 1
in (37), then (37) reduces to

qn+1qn−1 − q2n = 2(−1)
n−1

(41)
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Corollary 4.13 (Pell-Lucas). If p = 2, q = 1 and V0 = Q0 = 2, V1 = Q1 = 2
in (37), then (37) reduces to

Qn+1Qn−1 −Q2
n = 8(−1)

n−1
(42)

Corollary 4.14 (Goksal Bilgici). If p = 2a, q = b− a2 and V0 = f0 = 0, V1 =
f1 = 1
and p = 2a, q = b−a2 and V0 = l0 = 2, V1 = l1 = 2a in (37), then (37) reduces
to

fn+1fn−1 − f2
n = −

(
a2 − b

)n−1
. (43)

and
ln+1ln−1 − l2n = 4b

(
a2 − b

)n−1
. (44)

Theorem 4.15 (Catalan identity). For every integer n and r, generalized se-
quence defined in(1)we have

Vn+rVn−r − Vn
2 = (−q)

n−r

(
αr − βr

α− β

)2 (
qa2 + pba− b2

)
.

Proof. Using the definition in (1) and the generalized Fibonacci sequence (16)
we have

Vn+rVn−r − Vn
2 = −(αβ)

n−r

(
αr − βr

α− β

)2 [
(αβ)V 2

0 − (α+ β)V0V1 + V1
2
]
.

which can be written as

Vn+rVn−r − Vn
2 = (−q)

n−r

(
αr − βr

α− β

)2 (
qa2 + pba− b2

)
. (45)

□

Theorem 4.16. For every integer n,r and s, generalized sequence defined in
(1) and (16) we have

Vn+rVn+s − VnVn+r+s = (−q)
n

(
αr − βr

α− β

)(
αs − βs

α− β

)(
qa2 + pba− b2

)
.

Proof. Using the definition in (1) for the generalized Fibonacci sequence and
(16) we have

Vn+rVn+s − VnVn+r+s = (−q)
n

(
αr − βr

α− β

)(
αs − βs

α− β

)(
qa2 + pba− b2

)
(46)

□

Corollary 4.17. On substituting the appropriate values for p, q in the re-
currence relation defined in (1) and the initial conditions V0 and V1 for Fi-
bonacci,Lucas,Pell, modified Pell, Pell-Lucas and Goksal Bilgici sequences in
(46), then the corresponding identity for these sequences is obtained.
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Theorem 4.18 (d’Ocagne’s Identity). For every integer m and n generalized
sequence defined in (1) and (16) we have

VmVn+1 − Vm+1Vn = −(−q)
n

(
αm−n − βm−n

α− β

)(
qa2 + pba− b2

)
.

Proof. content... Using the definition in (1) for the generalized Fibonacci se-
quence and (16) we have

VmVn+1 − Vm+1Vn = −(−q)
n

(
αm−n − βm−n

α− β

)(
qa2 + pba− b2

)
. (47)

□

Corollary 4.19. On substituting the appropriate values for p, q in the re-
currence relation defined in (1) and the initial conditions V0 and V1 for Fi-
bonacci,Lucas,Pell, modified Pell, Pell-Lucas and Goksal Bilgici sequences in
(46), then the corresponding identity for these sequences is obtained.

Theorem 4.20 (Gelin Cesaro identity). For every integer n,r, we have

Vn−2Vn−1Vn+1Vn+2 − Vn
2

= V0
4∇

(
∆n−1∆n∆n+2∆n+3 − (∆n+1)

4
)

+ V0
3(V1 − pV0)∇

(
(∆n+2)

2
∆n−1∆n + (∆n−1)

2
∆n+2∆n+3 − 4(∆n+1)

3
∆n

+∆n∆n+3(∆n−1∆n+1 +∆n−2∆n+2)
)

+ V0
2(V1 − pV0)

2∇
(
∆n−2∆n+3(∆n−1∆n+2 +∆n∆n+1) + ∆n−1∆n∆n+1∆n+2

+ (∆n−1)
2
(∆n+2)

2
+ (∆n−1)

2
∆n+1∆n+3 + (∆n+2)

2
∆n−2∆n − 6(∆n+1)

2
(∆n)

2
)

+ V0(V1 − pV0)
3∇

(
∆n−2∆n+1(∆n−1∆n+1∆n+3

+∆n−2∆n+1) + ∆n−1∆n−2(∆n+2)
2
+ (∆n−1)

2
∆n+1∆n+2

)
+ (V1 − pV0)

4∇
(
∆n−2∆n−1∆n+1∆n+2 − (∆n)

4
)

(48)

where

∆n = (αn − βn) =
(√

p2 + 4q
) [n2 ]∑

j=0

C

(
n− j − 1

j

)
pn−j−1qj ,∇ = 1/(α−β)4

Theorem 4.21 (d’Ocagne’s Identity). For every integer m and n generalized
sequence defined in (1) and (16) we have

VmVn+1 − Vm+1Vn = −(−q)
n

(
αm−n − βm−n

α− β

)(
qa2 + pba− b2

)
.
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Proof. Using the definition in (1) for the generalized Fibonacci sequence and
(16) we have

VmVn+1 − Vm+1Vn = −(−q)
n

(
αm−n − βm−n

α− β

)(
qa2 + pba− b2

)
. (49)

□

Theorem 4.22. For every integers m and n in the generalized sequence defined
in (1) and numbers defined in (16) we have

Vn+m ± Vn−m = [(Rn+m +Rn−m)] (V1 − pV0)± [(Rn+m+1 +Rn−m+1)]V0

,

Vn+mVn−m = (Rn−mRn+m) (V1 − pV0)
2
+ (Rn−m+1Rn+m+1)V0

2

+ (−q)
m+n+1

l−2m+1 + (−q)
m−n+

l2m+1 +
1

(p2 + 4q)
(V1 − pV0)V0

where Ri =
(

αi−βi

α−β

)
.

Theorem 4.23. For every integer n in the generalized sequence defined in (1)
and numbers in (16) we have

Vn+1 − αVn = [V0β + (V1 − pV0)]β
n

Vn+1 − βVn = [V0α+ (V1 − pV0)]α
n

(Vn+1 − αVn) (Vn+1 − βVn) =
(
a2q2 − pab+ b2

)
(−q)

n

Theorem 4.24. For every integer n in the generalized sequence defined in (1)
and numbers defined in (16) we have

lim
n→∞

Vn+1

Vn
=

{
α if p > 0, q ≥ 0, p, q ∈ N

β if p < 0, q, p2 + 4q > 0, p, q ∈ R

5. Discussion and Conclusion

In this article, an advanced generalization of the Fibonacci sequence, which
we call the generalized Fibonacci sequence is considered which is Unlike other
generalizations as its parameters for the recurrence relation and for the initial
terms, a, b, p, and q can be any real numbers. First ten terms are of this se-
quence are exhibited in Figure-1 1 in general form and with values and with
some Table-2 (tablualr form). How these sequences progresses versus increas-
ing n is exhibited graphically in Figure-2. Terms of the any knwon sequence
can be checked and verified on imposing the restriction on parameters p,q, a
and b. Generalized generating function (3) and Binet formula (5) are obtained,
then utilizing these, Generating function and Binet formulas of known existing
sequences are also verified. Special cases of generating function and Binet formu-
las of this generalization are also displayed in the tabular form in Table-1. Some
identities in their generalized forms are also obtained and can be specialized to
the existing identities by simply substituting the values of a, b, p, and q. Finally
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Table ratio of (n+1)th to nth terms as n approaches to infinity is illustrated in
tabular form in Table-3 and graphically in Figure-3.

Figure 2. Progress of the Sequence grows using the
generalized term of (1).

Table 2. Generalization of Classical fibnoacci
Sequence

Initial
Conditions

V0 = 0, V1 = 1,
p = 1, q = 1

V0 = 2, V1 = 1,
p = 1, q = 1

V0 = 0, V1 = 1,
p = 2, q = 1

V0 = 1, V1 = 1,
p = 2, q = 1

V0 = 2, V1 = 2,
p = 2, q = 1

V0 = 0, V1 = 1,
p = 1, q = 2

n= Fibonacci Lucas Pell Modified-Pell Pell-Lucas Jacobstal
1 0 2 0 1 2 0
2 1 1 1 1 2 1
3 1 3 2 3 6 1
4 2 4 5 7 14 3
5 3 7 12 17 34 5
6 5 11 29 41 82 11
7 8 18 70 99 198 21
8 13 29 169 239 478 43
9 21 47 408 577 1154 85
10 34 76 985 1393 2788 171
— — — — — — —
100 3.542× 1020 7.921× 1020 6.669× 1037 9.474× 1037 1.895× 1038 2.11310× 1029
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Figure 3. Ratio lim
n→∞

fn+1

fn
for the well known sequences

using the generalized term of (1).

Table 3. lim
n→∞

fn+1

fn
of Generalization of Classical

fibnoacci Sequence

Initial
Conditions /
Recurrence
Relation

V0 = 0, V1 = 1,
p = 1, q = 1

V0 = 2, V1 = 1,
p = 1, q = 1

V0 = 0, V1 = 1,
p = 2, q = 11

V0 = 1, V1 = 1,
p = 2, q = 1

V0 = 2, V1 = 2,
p = 2, q = 1

V0 = 0, V1 = 1,
p = 1, q = 2

V0 = 2, V1 = 1,
p = 1, q = 2

Sequence Fibonacci Lucas Pell Modified-Pell Pell-Lucas Jacobstal
Jacobstal
Lucas

Vn+1/Vn 1.618 1.618 2.414 2.414 2.414 2.00 2.00

Similar expression for the Goksal Bilgici [?] is

lim
n→∞

fn+1

fn
or lim

n→∞

ln+1

ln
→

{
a+

√
a2 + b2 − a if a > 0, a ∈ N, b ∈ R

a−
√
a2 + b2 − a if a < 0, a ∈ N, b ∈ R.
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