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PAIR MEAN CORDIAL LABELING OF CERTAIN

LADDER GRAPHS

R. PONRAJ∗ AND S. PRABHU

Abstract. Consider a (p, q) graph G = (V,E). Define

ϱ =

{ p
2

p is even
p−1
2

p is odd,

and Υ = {±1,±2, . . . ,±ϱ} referred to as the label set. Let us consider a

mapping φ : V → Υ, where, for every even p, distinct labels are assigned

to the various elements of V in Υ, and for every odd p , distinct labels are
assigned to the p − 1 elements of V in Υ, with a repeating label for the

remaining one vertex. After that φ is referred to as a pair mean cordial

labeling (PMC-labeling) if for every edge µν in G, there is a label for
φ(µ)+φ(ν)

2
if φ(µ) + φ(ν) is even and

φ(µ)+φ(ν)+1
2

if φ(µ) + φ(ν) is odd

such that |S̄φ1 − S̄φc
1
| ≤ 1 where S̄φ1 and S̄φc

1
respectively denote the

number of edges labeled with 1 and the number of edges not labeled with

1 respectively. A pair mean cordial graph (PMC-graph) is defined as a
graph G with PMC-labeling. In this paper, we investigate the pair mean

cordial labeling behavior of open ladder, triangular ladder, diagonal ladder,

slanting ladder, circular ladder and diamond ladder.

AMS Mathematics Subject Classification : 05C78.
Key words and phrases : Triangular ladder, diagonal ladder, slanting

ladder, circular ladder and diamond ladder.

1. Introduction

A simple undirected and finite graph are considered for our research and All
terminology and notations used here are as in [6]. In graph theory, one of the
most extensively researched topics is graph labeling. The process is obtained
by assigning integers to the elements of a graph, subject to specific limitations.
Gallian [5] periodically updates a dynamic survey on graph labeling and the
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concept of cordial labeling was introduced in [3]. In this work, we examine
the PMC labeling behavior of several ladder-related graphs, including as open
ladder, triangular ladder, diagonal ladder, slanting ladder, circular ladder and
diamond ladder.

2. Preliminaries

Definition 2.1. [18] The ladder graph Lr is defined as Lr = Pr × K2, where
K2 is a complete graph with two vertices, Pr is a path with r vertices, and ×
indicates the cartesian product. Evidently, the ladder graph Lr consists of 3r−2
edges and 2r vertices.

Definition 2.2. [18] The open ladder O(Lr), r ≥ 2 is a graph that is created
by taking two paths of length r with V (O(Lr)) = {µs, νs : 1 ≤ s ≤ r} and
E(O(Lr)) = {µsµs+1, νsνs+1 : 1 ≤ s ≤ r − 1} ∪ {µs+1νs+1 : 1 ≤ s ≤ r − 2}.
Evidently, an open ladder graph O(Lr) consists of 3r − 4 edges and 2r vertices.

Definition 2.3. [18] The triangular ladder TLr is a graph that is created by
taking the ladder Lr by include the edges µsνs+1, 1 ≤ s ≤ r − 1 where µs and
νs, 1 ≤ s ≤ r are the vertices of Lr such that µ1, µ2, . . . , µr and ν1, ν2, . . . , νr are
two paths of length r in Lr. Evidently, its vertices total 2r, and its edges total
4r–3.

Definition 2.4. [18] The open triangular ladder O(TLr), r ≥ 2 is a graph
that is created by taking an open ladder O(Lr) by adding the edges µsνs+1 for
1 ≤ s ≤ r − 1. Evidently, the open triangular ladder graph O(TLr) consists of
4r − 5 edges and 2r vertices.

Definition 2.5. [18] The diagonal ladder DLr is a graph that is created by
taking the ladder Lr by include the edges µsνs+1, µs+1νs, 1 ≤ s ≤ r−1 where µs

and νs, 1 ≤ s ≤ r are the vertices of Lr such that µ1, µ2, . . . , µr and ν1, ν2, . . . , νr
are two paths of length r in Lr. Evidently, the diagonal ladder DLr consists of
5r − 4 edges and 2r vertices.

Definition 2.6. [18] The open diagonal ladder O(DLr), r ≥ 2 is a graph that is
created by taking the diagonal ladder graph DLr through the elimination of the
edges µsνs for s = 1 and r. Evidently, an open diagonal ladder O(DLr) consists
of 5r − 6 edges and 2r vertices.

Definition 2.7. The antiprism graph Ar, r ≥ 3 contains an outer and inner
cycles Cr, while the two cycles joined by lines νsµs, for 1 ≤ s ≤ r and νsµs+1,
for 1 ≤ s ≤ r − 1.

Definition 2.8. [18] The slanting ladder SLr is a graph that is created by taking
two paths µ1µ2 . . . µr and ν1ν2 . . . νr by joining each µs with νs+1, 1 ≤ s ≤ r−1.
Evidently, the slanting ladder SLr consists of 3r − 2 edges and 2r vertices.
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Definition 2.9. [19] The circular ladder graph CLr, r ≥ 3 is defined by CLr =
Cr × P2 where the path P2 has two vertices, the cycle Cr has n vertices, and ×
indicates the cartesian product. Evidently, the circular ladder graph CLr consists
of 3r edges and 2r vertices.

Definition 2.10. [19] The Mobius ladder graph Mr is a graph obtained from
the ladder Pr × P2 by joining the opposite end points of the two copies of Pr.
Evidently, its edges total 3r, and its vertices 2r.

Definition 2.11. [18] The connected graph Dlr, which is a diamond ladder
graph, has a vertex set V (Dlr) = {µs, νs, ωs, κs\1 ≤ s ≤ r} and an edge set
E(Dlr) = {µsνs, µsωs, µsκs, νsωs, νsκs\1 ≤ s ≤ r}∪{µsµs+1, νsνs+1, κsωs+1\1 ≤
s ≤ r − 1}. Evidently, the diamond ladder graph Dlr consists of 8r − 3 edges
and 4r vertices.

3. Main Theorems

Theorem 3.1. The ladder Lr is PMC-graph for every r ≥ 3 [8].

Theorem 3.2. The open triangular ladder O(TLr) is PMC-graph for every
r ≥ 2.

Proof. Consider the open triangular ladder O(TLr). Assign the labels 2, 3, . . . , r
on µ1, µ2, . . . , µr−1 respectively and put the vertex µr with label −r. Also,
we designate the label 1 to the vertex ν1 and put the vertices ν2, ν4, . . . , νr to
the labels −1,−2, . . . ,−r + 1, respectively. Subsequently, S̄φ1 = 2r − 3 and
S̄φc

1
= 2r − 2. □

Example 3.1. Figure 1 illustrates the PMC labeling of the open triangular lad-
der O(TL5).

2 3 4 5 -5

1 -1 -2 -3 -4

Figure 1

Theorem 3.3. The open ladder O(Lr) is PMC-graph for every r ≥ 2.

Proof. Let us consider an open triangular graph O(TLr). We have two following
cases:
Case A: For odd r
Put labels 3, 5, . . . , r on µ1, µ3, . . . , µr−2, accordingly. For each of µ2, µ4, . . . , µr−1,
assign the labels −2,−4, . . . ,−r + 1. Assign the vertex µr with label 1. Sub-
sequently, allocate the labels −1,−3, . . . ,−r to ν1, ν3, . . . , νr and allocate the
labels 2, 4, . . . , r − 1 to ν2, ν4, . . . , νr−1.
Case B: For even r
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At µ1, µ3, . . . , µr−3, allocate the labels 3, 5, . . . , r − 1, accordingly. Allocate
the labels −2,−4, . . . ,−r to µ2, µ4, . . . , µr in that order. Designate the ver-
tex µr−1 with label r. Subsequently, allocate the labels −1,−3, . . . ,−r + 1 to
ν1, ν3, . . . , νr−1, accordingly and allocate the labels 2, 4, . . . , r−2 correspondingly
to ν2, ν4, . . . , νr−2. Additionally, assign the vertex νr with label 1. Moreover,
explain the results in Table 1.

□

r S̄φ1
S̄φc

1

For odd r 3r−5
2

3r−3
2

for even r 3r−4
2

3r−4
2

Table 1

Theorem 3.4. The triangular ladder TLr is not PMC-graph for every r ≥ 2.

Proof. Suppose the triangular ladder TLr is PMC-graph. Therefore, two possi-
ble outcomes exist if 1 is given to µν: both φ(µ)+φ(ν) = 1 and φ(µ)+φ(ν) = 2
can be utilized. The maximum number of edges labeled with one will be always
2r − 3. That’s S̄φ1 ≤ 2r − 3 and hence S̄φc

1
≥ 2r. Subsequently S̄φc

1
− S̄φ1 ≥

2r − (2r − 3) = 3 > 1, a contradiction.
□

Theorem 3.5. The diagonal ladder DLr is not PMC-graph for every r ≥ 2.

Proof. Now suppose the diagonal triangular ladder DLr is PMC-graph. There-
fore, two possible outcomes exist if 1 is given to µν: both φ(µ) + φ(ν) = 1 and
φ(µ) + φ(ν) = 2 can be utilized. The maximum number of edges labeled with
1 will be always 2r − 3. That’s S̄φ1

≤ 2r − 3 and S̄φc
1
≥ 3r − 1. Subsequently

S̄φc
1
− S̄φ1

≥ 3r − 1− (2r − 3) = r + 2 ≥ 4 > 1, a contradiction. □

Theorem 3.6. The open diagonal ladder O(DLr) is not PMC-graph for every
r ≥ 2.

Proof. Suppose the triangular ladder O(DLr) is PMC-graph. Therefore, two
possible outcomes exist if 1 is given to µν: both φ(µ) + φ(ν) = 1 and φ(µ) +
φ(ν) = 2 can be utilized. The maximum number of edges labeled with 1 will be
always 2r− 3. That’s S̄φ1 ≤ 2r− 3 and S̄φc

1
≥ 3r− 3. Subsequently S̄φc

1
− S̄φ1 ≥

3r − 3− (2r − 3) = r ≥ 2 > 1, a contradiction.
□

Theorem 3.7. The anti prism graph Ar is not PMC-graph for every r ≥ 3.

Proof. Let V (Ar) = {µs, νs\1 ≤ s ≤ r} and E(Ar) = {µsνs, νrν1, µrµ1, µrν1\1 ≤
s ≤ r}∪{µs+1νs, µsµs+1, νsνs+1\1 ≤ s ≤ r−1}. Evidently, the anti prism graph
Ar consists of 4r edges and 2r vertices. Suppose Ar is PMC-graph. Accord-
ingly, two possible outcomes exist if 1 is given to µν: both φ(µ) +φ(ν) = 1 and
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φ(µ) +φ(ν) = 2 can be utilized. The maximum number of edges labeled with 1
will be always 2r − 3. That’s S̄λ1

≤ 2r − 3. Also S̄φc
1
≥ 4r − (2r − 3) = 2r + 3.

Subsequently S̄φc
1
− S̄φ1

≥ 2r + 3− (2r − 3) = 6 > 1, a contradiction.
□

Theorem 3.8. The slanting ladder SLr is PMC-graph for every r ≥ 2.

Proof. Let us now consider the slanting ladder SLr. We have two following
cases:
Case A: For odd r
Put labels 3, 5, . . . , r on µ1, µ3, . . . , µr−2 correspondingly and allocate the labels
−1,−3, . . . ,−r+2 according to µ2, µ4, . . . , µr−1. Fix the label −r with µr. Put
label 1 on ν1. More over, allocate the labels −2,−4, . . . ,−r + 1 corresponding
to ν2, ν4, . . . , νr−1 and 2, 4, . . . , r − 1 to ν3, ν5, . . . , νr accordingly.
Case B: For even r
Put labels 3, 5, . . . , r − 1 on µ1, µ3, . . . , µr − 3 correspondingly and allocate the
labels −1,−3, . . . ,−r+1 according to µ2, µ4, . . . , µr. Designate the label r with
µr−1. Fix label 1 with ν1. Additionally, allocate the labels −2,−4, . . . ,−r
corresponding to ν2, ν4, . . . , νr and 2, 4, . . . , r− 2 to ν3, ν5, . . . , νr−1 accordingly.
Moreover, explain the results in Table 2.

□

r S̄φ1 S̄φc
1

For odd r 3r−3
2

3r−3
2

For even r 3r−4
2

3r−2
2

Table 2

Example 3.2. Figure 2 illustrates the PMC labeling of the slanting ladder SL5.

3 5-1 -3 -5

1 -2 -42 4

Figure 2

Theorem 3.9. The circular ladder CLr is PMC-graph iff r ≥ 5

Proof. Let E(CLr) = {µsνs, µtµt+1, νtνt+1, µrµ1, νrν1\1 ≤ s ≤ r, 1 ≤ t ≤ r− 1}
and V (CLr) = {µs, νs\1 ≤ s ≤ r}. Evidently, the circular ladder CLr consists
of 3r edges and 2r vertices.
Case A: r ≡ 0 (mod 4)
Subcase a: r = 4
Suppose that CL4) is PMC-graph. Therefore, two possible outcomes exist if 1
is given to µν: both φ(µ) + φ(ν) = 1 and φ(µ) + φ(ν) = 2 can be utilized. The
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maximum number of edges labeled with 1 will be always 5. That’s S̄φ1
≤ 5 and

S̄φc
1
≥ 7. Subsequently, S̄φc

1
− S̄φ1

≥ 7− 5 = 2 > 1, a contradiction.
Subcase b: r > 4
Put labels −1,−3, . . . , −r−2

2 on µ1, µ3, . . . , µ r+2
2
. subsequently, allocate the la-

bels r+6
2 , r+10

2 , . . . , r−2 according to µ r+8
2
, µ r+12

2
, . . . , µr−1 and 3, 5, . . . , r−1 to

µ2, µ4, . . . , µr−2 in that order. Designate label 1 with µr. More over, Allocate the
labels 2, 4, . . . , r+4

2 according to ν1, ν3, . . . , ν r+2
2

and −r−6
2 , −r−10

2 , . . . ,−r+ 1 to

ν r+6
2
, ν r+10

2
, . . . , νr−1 correspondingly. Subsequently, put labels −2,−4, . . . ,−r

on ν2, ν4, . . . , νr.
Case B: r ≡ 1 (mod 4)
Now allocate the labels −1,−3, . . . , −r−1

2 corresponding to µ1, µ3, . . . , µ r+1
2

and
r+7
2 , r+11

2 , . . . , r−1 to µ r+5
2
, µ r+9

2
, . . . , µr−2 correspondingly. Allocate the labels

3, 5, . . . , r according to µ2, µ4, . . . , µr−1 and fix 1 with µr. Additionally, designate
the labels 2, 4, . . . , r+3

2 corresponding to ν1, ν3, . . . , ν r+1
2

and −r−5
2 , −r−9

2 , . . . ,−r

to ν r+5
2
, ν r+9

2
, . . . , νr correspondingly. Put labels−2,−4, . . . ,−r+1 on ν2, ν4, . . . ,

νr−1.
Case C: r ≡ 2 (mod 4)
Allocate the labels −1,−3, . . . ,−r + 1 corresponding to µ1, µ3, . . . , µr−1 and
3, 5, . . . , r+4

2 to µ2, µ4, . . . , µ r+2
2

accordingly. Put labels −r−6
2 , −r−10

2 , . . . ,−n

on µ r+6
2
, µ r+10

2
, . . . , µr. We designate the labels 2, 4, . . . , r corresponding to

ν1, ν3, . . . , νr−1 and −2,−4, . . . , −n−2
2 to ν2, ν4, . . . , νn+2

2
accordingly. Subse-

quently, allocate the labels r+8
2 , r+12

2 , . . . , r−1 according to ν r+6
2
, ν r+10

2
, . . . , νr−2

and fix 1 with νr.
Case D: r ≡ 3 (mod 4)
Subcase a: r = 3
Suppose that CL3 is PMC-graph. Therefore, two possible outcomes exist if 1 is
given to µν: both φ(µ) + φ(ν) = 1 and φ(µ) + φ(ν) = 2 can be utilized. The
maximum number of edges labeled with 1 will be always 3. That’s S̄φ1

≤ 3 and
S̄φc

1
≥ 6. Subsequently, S̄φc

1
− S̄φ1

≥ 6− 3 = 3 > 1, a contradiction.
Subcase b: r > 3
Put labels −1,−3, . . . ,−r on µ1, µ3, . . . , µr. Designate the labels 3, 5, . . . , r+3

2

corresponding to µ2, µ4, . . . , µ r+1
2

and −r−5
2 , −r−9

2 , . . . ,−r+1 to µ r+5
2
, µ r+9

2
, . . . ,

µr−1 accordingly. Allocate the labels 2, 4, . . . , r− 1 according to ν1, ν3, . . . , νr−2

and −2,−4, . . . , −r−1
2 to ν2, ν4, . . . , ν r+1

2
correspondingly. Subsequently, allocate

the labels r+7
2 , r+11

2 , . . . , r corresponding to ν r+5
2
, ν r+9

2
, . . . , νr−1 and fix 1 with

νr. Moreover, explain the results in Table 3.
□

Example 3.3. Figure 3 illustrates the PMC labeling of the circular ladder graph
CL6.
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r S̄φ1 S̄φc
1

r ≡ 0 (mod 4) 3r
2

3r
2

r ≡ 1 (mod 4) 3r−1
2

3r+1
2

r ≡ 2 (mod 4) 3r
2

3r
2

r ≡ 3 (mod 4) 3r−1
2

3r+1
2

Table 3

2

-2

4

-4

6

-6

-1
3

-3
5

-5

1

Figure 3

Theorem 3.10. The Mobius ladder Mr is PMC-graph for every r ≥ 5.

Proof. Let E(Mr) = {µsνs, µ1ν2, µ2ν1, µrµ1, νrν1\1 ≤ s ≤ r}∪{µsµs+1, νsνs+1\
2 ≤ s ≤ r− 1} and V (Mr) = {us, νs\1 ≤ s ≤ r}. Evidently, the diamond ladder
graph Dlr consists of 3r edges and 2r vertices.
Case A: r = 3
This Proof is consistent with Theorem 3.11.
Case B: r = 4
This Proof is consistent with Theorem 3.11.
Case C: r > 4
Let φ(µ1) = −1 and φ(ν1) = 2. The remaining vertices, µs, νs, 2 ≤ s ≤ r, are
then given the labels, following Theorem 3.11.

□

Theorem 3.11. The diamond ladder graph Dlr is not PMC-graph for every
r ≥ 2.

Proof. Suppose the diamond ladder graph Dlr is PMC-graph. Then, two possi-
ble outcomes exist if 1 is given to µν: both φ(µ)+φ(ν) = 1 and φ(µ)+φ(ν) = 2
can be utilized. The maximum number of edges labeled with 1 will be always
4r − 3. That’s S̄φ1

≤ 4r − 3 and S̄φc
1
≥ 8r − 3 − (4r − 3) = 4r. Subsequently

S̄φc
1
− S̄φ1

≥ 4r − (4r − 3) = 3 > 1, a contradiction.
□

Theorem 3.12. The subdivision of ladder graph S(Lr) is PMC-graph for every
r ≥ 2
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Proof. Let V (S(Lr) = {µs, νs, ωs, κt, ηt : 1 ≤ s ≤ r and 1 ≤ t ≤ r − 1} and
E(S(Lr)) = {µsωs, νsωs\1 ≤ s ≤ r}∪{µsηs, µs+1ηs, νsκs, νs+1κs\1 ≤ s ≤ r−1}.
Evidently, the subdivision of ladder graph S(Lr) consists of 6r − 4 edges and
5r − 2 vertices. We consider two cases:
Case A: For even r
Now allocate the labels 3, 8, . . . , 5r−4

2 corresponding to µ1, µ3, . . . , µr−1 and −3,

−8, . . . , −5r+14
2 to µ2, µ4, . . . , µr−2 correspondingly. Designate label −5r+2

2 with

µr. Allocate the labels −2,−7, . . . , −5r+6
2 according to η1, η3, . . . , ηr−1 and

−5,−10, . . . , −5r+10
2 to η2, η4, . . . , ηr−2. Additionally, designate the labels−1,−6,

. . . , −5r+8
2 corresponding to ω1, ω3, . . . , ωr−1 and 5, 10, . . . , 5r−10

2 to ω2, ω4, . . . , ωr−2

correspondingly. Put label 1 on ωr. Subsequently designate the labels 2, 7, . . . ,
5r−6

2

corresponding to ν1, ν3, . . . , νr−1 and −4,−9, . . . , −5r+12
2 to ν2, ν4, . . . , νr−2 cor-

respondingly. Assign label −5r+4
2 with νr. Allocate the labels 4, 9, . . . , 5r−2

2

according to κ1, κ3, . . . , κr−1 and 6, 11, . . . , 5r−8
2 to κ2, κ4, . . . , κr−2.

Case B: For odd r
Here designate the labels 3, 8, . . . , 5r−9

2 corresponding to µ1, µ3, . . . , µr−2 and

−3,−8, . . . , −5r+9
2 to µ2, µ4, . . . , µr−1 correspondingly. Designate label 5r−3

2

with µr. Allocate the labels −2,−7, . . . , −5r+11
2 according to η1, η3, . . . , ηr−2 and

−5,−10, . . . , −5r+5
2 to η2, η4, . . . , ηr−1. Designate the labels −1,−6, . . . , −5r+3

2

corresponding to ω1, ω3, . . . , ωr and 5, 10, . . . , 5r−5
2 to ω2, ω4, . . . , ωr−1 corre-

spondingly. Subsequently designate the labels 2, 7, . . . , 5r−11
2 corresponding to

ν1, ν3, . . . , νr−2 and −4,−9, . . . , −5r+7
2 to ν2, ν4, . . . , νr−2 correspondingly. Fix

1 with νr. Allocate the labels 4, 9, . . . , 5r−7
2 according to κ1, κ3, . . . , κr−2 and

6, 11, . . . , 5r−3
2 to κ2, κ4, . . . , κr−1. In both cases, S̄φc

1
= 3r − 2 = S̄φ1

□

Example 3.4. Figure 4 illustrates the PMC labeling of the subdivision of ladder
graph S(L4).

3

5

7 9

-1

-2

4 -4

8

-6

2

-3

6

-5 -7 -9

1

-8

Figure 4

4. Discussion

The idea of cordial labeling was introduced by Cahit [3] and For more about
the cordial and ladder related graphs in [1,2,4,7,9-19]. Inspired by the several
authors who have written about graph labeling, we developed a brand-new la-
beling technique known as pair mean cordial labeling [8]. In this study, we have
investigated the PMC-labeling behavior of several ladder-related graphs, includ-
ing as open ladder, triangular ladder, diagonal ladder, slanting ladder, circular
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ladder and diamond ladder. We can discuss more similar results for various
graphs.

5. Limitation of Research

It is now difficult to analyze the PMC-labeling behavior of the spectrum
graph, cocktail party graph, lobster graph, clematis flower graph, bamboo tree,
pumpkin graph, caterpillar graph, kayak paddle graph, n− polygonal snake and
layered graph.

6. Future Research

The rocket graph, polar grid graph, generalized web graph, generalized prism
graph, generalized theta graph, lollipop graph and broom graph can also be
analysed for PMC-labeling in future directions of research papers.

7. Conclusion

It is very interesting to find whether the graph admits PMC-labeling or not.
The PMC-labeling behavior of some ladder related graphs like open ladder,
triangular ladder, diagonal ladder, slanting ladder, circular ladder and diamond
ladder are studied in this paper. It is possible to examine the PMC-labeling
technique for some other family of graphs.
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