Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2021R1A5A1032433).
References
- Abdullahi, A., Wang, Y. and Bhattacharya, S. (2020), "Comparative modal analysis of monopile and jacket supported offshore wind turbines including soil-structure interaction", Int. J. Struct. Stab. Dyn., 20(10), 23-33. https://doi.org/10.1007/s13296-019-00267-7
- Abhinav, K.A. and Saha, N. (2015), "Coupled hydrodynamic and geotechnical analysis of jacket offshore wind turbine", Soil Dyn. Earthq. Eng., 73, 66-79. https://doi.org/10.1016/j.soildyn.2015.03.002
- Ahmadi, H. and Janfeshan, N.M. (2021), "Local joint flexibility of multi-planar tubular TT-joints: Study of geometrical effects and the formulation for offshore design practice", Appl. Ocean Res., 113, 102758.
- Ahmadi, H. and Nejad, A.Z. (2017), "Geometrical effects on the local joint flexibility of two-planar tubular DK-joints in jacket substructure of offshore wind turbines under OPB loading", Thin-Wall. Struct., 114, 122-133. https://doi.org/10.1016/j.tws.2017.02.001
- Ahmadi, H. and Nejad, A.Z. (2017), "Local joint flexibility of two-planar tubular DK-joints in OWTs subjected to axial loading: Parametric study of geometrical effects and design formulation", Ocean Eng., 136, 1-10. https://doi.org/10.1016/j.oceaneng.2017.03.011
- American Petroleum Institute (2000), API RP 2A-WSD Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-Working Stress Design.
- Asgarian, B., Alanjari, P. and Aghaeidoost, V. (2015), "Threedimensional joint flexibility element for modeling of tubular offshore connections", J. Marine Sci. Technol., 20, 629-639. https://doi.org/10.1007/s00773-015-0317-2
- Asgarian, B., Mokarram, V. and Alanjari, P. (2014), "Local joint flexibility equations for Y-T and K-type tubular joints", Ocean Syst. Eng., 4(2), 151-167. https://doi.org/10.12989/ose.2014.4.2.151
- Baltrop, N.D.P. and Adams, A.J. (1991), "Dynamics of fixed marine structures", Netherlands: Elsevier Science.
- Ban, J., Ma, C., Vachirapanyakun, S., Plodpradit, P. and Zi, G. (2023), "Analysis program for offshore wind energy substructures embedded in AutoCAD", J. Korea Institute Struct. Maintenance Inspect., 27(4), 33-44. https://doi.org/10.11112/JKSMI.2023.27.4.33
- Bergua, R., Robertson, A., Joakman, J. and Platt, A. (2021), "Specification document for OC6 phase II: Verification of an advanced soil-structure interaction model for offshore wind turbines", Nat. Renew. Energy Lab. (NREL), United States.
- Bouwkamp, J.G., Hollings, J.P., Maison, B.F. and Row, D.G. (1980), "Effects of joint flexibility on the response of offshore towers", Offshore Technology Conference, Houston, 455-464.
- Buitrago, J., Healy, B. and Chang, T. (1993), "Local joint flexibility of tubular joints", Proceedings of the 12th International Conference on Offshore Mechanics and Arctic Engineering, OMAE.
- Carter, J.P. and Kulhawy, F.H. (1992), "Analysis of laterally loaded shafts in rock", J. Geotech. Eng., 118(6), 839-855. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:6(839)
- Chen, B., Hu Y. and Tan, M. (1990), "Local joint flexibility of tubular joints of offshore structures", Marine Struct., 3(3), 177-197. https://doi.org/10.1016/0951-8339(90)90025-M
- Chen, T.Y. and Zhang, H.Y. (1996), "Stress analysis of spatial frames with consideration of local flexibility of multiplanar tubular joint", Eng. Struct., 18(6), 465-471. https://doi.org/10.1016/0141-0296(95)00109-3
- Damiani, R., Dykes, K. and Scott, G. (2016), "A comparison study of offshore wind support structures with monopiles and jackets for U.S. waters", Journal Physics: Conference Series 753, 092003.
- Det Norske Veritas (2022), DNV Report No. 2022-9773 Bladed: Local Joint Flexibilities Verification Report.
- Det Norske Veritas (2014), DNVGL-OS-J101, Design of Offshore Wind Turbine Structures.
- Det Norske Veritas (2016), DNVGL-ST-0126 Support Structures for Wind Turbines.
- Det Norske Veritas (2016), DNVGL-ST-0437 Loads and Site Conditions for Wind Turbines.
- Dubois, J., Muskulus, M. and Schaumann, P. (2013), "Advanced representation of tubular joints in jacket models for offshore wind turbine simulation", Energy Procedia, 35(1), 234-243. https://doi.org/10.1016/j.egypro.2013.07.176
- Fessler, H., Mockford, P.B. and Webster, J.J. (1986), "Parametric equations for the flexibility matrices of single brace tubular joints in offshore structures", Proceedings of the Institution of Civil Engineers, 81(4), 659-673. https://doi.org/10.1680/iicep.1986.466
- Gazetas, G. (1991), Foundation Vibrations, New York: Van Nostrand Reinholds. Chapter 15, 553-593.
- Gentils, T., Wang, L. and Kolios, A. (2017), "Integrated structural optimisation of offshore wind turbine support structures based on finite element analysis and genetic algorithm", Appl. Energy, 199, 187-204. https://doi.org/10.1016/j.apenergy.2017.05.009
- Higgins, W., Vasquez, C., Basu, D. and Griffiths, D.V. (2013), "Elastic solutions for laterally loaded piles", J. Geotech. Geoenviron. Eng., 139(7), 1096-1103. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000828
- International Electrotechnical Commission (2019), IEC 61400-3-1 Wind Energy Generation Systems-Part 3-1: Design Requirements for Fixed Offshore Wind Turbines.
- Ivanhoe, R.O., Wang, L. and Kolios, A. (2020)., "Generic framework for reliability assessment of offshore wind turbine jacket support structures under stochastic and time dependent variables", Ocean Eng., 216, 107691.
- Jalbi, S. and Bhattacharya, S. (2018), "Closed form solution for the first natural frequency of offshore wind turbine jackets supported on multiple foundations incorporating soil-structure interaction", Soil Dyn. Earthq. Eng., 113, 593-613. https://doi.org/10.1016/j.soildyn.2018.06.011
- Ma, C. and Zi, G. (2022), "Comparative study on the structural behavior of a transition piece for offshore wind turbine with jacket support", Steel Compos. Struct., 43(3), 363-373.
- Ma, C., Park, J. and Zi, G. (2024), "Comparative study on the dynamic responses of monopile and jacket-supported offshore wind turbines considering the pile-soil interaction in transitional waters", Ocean Eng., 292, 116564.
- Ma, H., Deng, Y. and Cheng, X. (2024), "Effect of long-term lateral cyclic loading on the dynamic response and fatigue life of monopile-supported offshore wind turbines", Marine Struct., 93, 103521.
- Ma, H., Yang, J. and Chen, L. (2018), "Effect of scour on the structural response of an offshore wind turbine supported on tripod foundation", Appl. Ocean Res., 73, 179-189. https://doi.org/10.1016/j.apor.2018.02.007
- Matlock. H. (1970), "Correlation for design of laterally loaded piles in soft clay", Offshore Technology Conference, Houston, OTC-1204-MS.
- Partovi-Mehr, N., Branlard, E., Song, M., Moaveni, B., Hines, E. M. and Robertson, A. (2023), "Sensitivity analysis of modal parameters of a jacket offshore wind turbine to operational conditions", J. Marine Sci. Eng., 11(8), 1524.
- Pender, M.J. (1993), "A seismic pile foundation design analysis", Bull. New Zealand Nat. Soc. Earthq. Eng., 26(1), 49-160. https://doi.org/10.5459/bnzsee.26.1.49-160
- Plodpradit, P., Dinh, V.N. and Kim, K.D. (2019), "Coupled analysis of offshore wind turbine jacket structures with pile soil-structure interaction using FAST v8 and X-WIND", Appl. Sci., 9(8), 1633.
- Popko, W., Georgiadou, S., Loukogeorgaki, E. and Vorpahl, F. (2016), "Influence of joint flexibility on local dynamics of a jacket support structure", J. Ocean Wind Energy, 3(1), 1-9. https://doi.org/10.17736/jowe.2016.jcr45
- Randolph, M.F. (1980), "The response of flexible piles to lateral loading", Géotechnique, 31(2), 247-259. https://doi.org/10.1680/geot.1981.31.2.247
- Reese, L.C., Cox, W.R. and Koop, F.D. (1974), "Analysis of laterally loaded piles in sand", Offshore Technology Conference, Houston, OTC-2080-MS.
- Rezaei, R., Fromme, P. and Duffour, P. (2018), "Fatigue life sensitivity of monopile-supported offshore wind turbines to damping", Renew. Energy, 123, 450-459. https://doi.org/10.1016/j.renene.2018.02.086
- Sánchez, C.R. and Padrón, L.A. (2024), "Influence of wind and seismic ground motion directionality on the dynamic response of four-legged jacket-supported Offshore Wind Turbines", Eng. Struct., 300, 117191.
- Shadlou, M. and Bhattacharya, S. (2016), "Dynamic stiffness of monopiles supporting offshore wind turbine generators", Soil Dyn. Earthq. Eng., 88, 15-32. https://doi.org/10.1016/j.soildyn.2016.04.002
- Shahmohammadi, A. and Shabakhty, N. (2019), "Fatigue sensitivity analysis to piles fixity length in offshore wind turbines jacket substructures", Iranian Conference on Renewable Energy and Distributed Generation, Tehran, Iran, 1-6.
- Tran, T.T. and Lee, D.Y. (2022), "Development of jacket substructure systems supporting 3MW offshore wind turbine for deep water sites in South Korea", Int. J. Naval Architect. Ocean Eng., 14, 100451.
- Ueda, Y., Rashed, S.M.H. and Nakacho, K. (1990), "An improved joint model and equations for flexibility of tubular joints", J. Offshore Mech. Arctic Eng., 112(2), 157-168. https://doi.org/10.1115/1.2919850
- Vorpahl, F., Popko, W. and Kaufer, D. (2013), "Description of a Basic Model of the "UpWind Reference Jacket" for Code Comparison in the OC4 Project under IEA Wind Annex XXX", Fraunhofer Institute for Wind Energy and Energy System Technology IWES.
- Yan, Y., Yang, Y., Bashir, M., Li, C. and Wang, J. (2022), "Dynamic analysis of 10 MW offshore wind turbines with different support structures subjected to earthquake loadings", Renew. Energy, 193, 758-777. https://doi.org/10.1016/j.renene.2022.05.045
- Zhu, B., Wen, K., Kong, D., Zhu, Z. and Wang, L. (2018), "A numerical study on the lateral loading behaviour of offshore tetrapod piled jacket foundations in clay", Appl. Ocean Res., 75, 165-177. https://doi.org/10.1016/j.apor.2018.04.001
- Zhu, B., Wen, K., Li, T., Wang, L. and Kong, D. (2018), "Experimental study on lateral pile-soil interaction of offshore tetrapod piled jacket foundations in sand", Canadian Geotech. J., 56(11), 1680-1689. https://doi.org/10.1139/cgj-2018-0292