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Crowd Density Prediction Using convLSTM Combined with Multi-Head Attention
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ABSTRACT

Accurate crowd density prediction is crucial for applications such as crowd management, public safety, and urban
planning. Traditional methods often struggle with capturing temporal dependencies and dynamic changes in video sequences,
leading to less reliable forecasts. Dense and dynamic crowds present additional challenges, including occlusions, motion blur,
and varied perspectives, which complicate accurate density estimation. To address these issues, we propose a novel approach
that integrates convolutional Long Short-Term Memory (convLSTM) networks with Multi-Head Attention mechanisms. This
combined model improves prediction accuracy by effectively capturing temporal patterns and spatial relationships, even in
complex scenarios. Extensive experiments show that our method significantly outperforms traditional techniques, offering a
robust solution for precise crowd density prediction in real-world applications.
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I . INTRODUCTION

Crowd density prediction plays a crucial role in
managing large events, ensuring public safety, and
guiding urban planning efforts. The rising frequency
of large-scale events, such as political rallies and
concerts, underscores the critical need for robust
crowd control measures [1]. Recent tragedies, such
as the 2022 Korea halloween crowd crush, which
resulted in numerous fatalities and injuries, highlight
the severe consequences of Inadequate crowd
management [2]. Overcrowding in venues often leads
to dangerous situations marked by fear and panic.
Traditional methods for predicting crowd density
struggle with dynamic environments due to issues
like occlusions, motion blur, and varied perspectives.
further complicate the estimation process, leading to
less reliable forecasts [3]. Addressing these issues
requires innovative solutions capable of modeling
both temporal patterns and spatial relationships of
crowds effectively.

Therefore, we propose a novel method for crowd
density prediction from combining Convolutional Long
Short-Term Memory (convLSTM) networks with
Multi-Head  Attention [415].  Our
approach leverages convLSTM's strength in capturing
and multi-head attention’s
spatial  features,
enhancing prediction accuracy. By integrating these

mechanisms

temporal — patterns

capability to focus on critical
advanced techniques, our model aims to improve the
Enhanced
capabiliies can aid in preventing
Our proposed method
represents a significant step forward in crowd density

precision of crowd density forecasts.
prediction
crowd-related  incidents.
prediction, offering a more reliable and accurate
solution for managing complex crowd dynamics.

Il. RELATED WORKS

In recent years, crowd analysis has become

increasingly vital within the field of computer
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vision, particularly in video surveillance, public
safety, and urban planning [6]. Accurate crowd
behavior prediction helps mitigate risks such as
mob  violence, traffic congestion, riots, and
stampedes [7]. To tackle the complexities of crowd

dynamics various approaches have been developed.

2.1 Crowd Density Estimation Approaches
Traditional — methods
techniques,

crowd-oriented
density
map-based approaches. Crowd-oriented techniques

include
regression  models, and
focus on detecting and counting individuals within a
scene but struggle with accuracy in high-density
situations due to occlusions and perspective
distortion.

crowd density but

Regression-based models [8]. predict

struggle with  complex,

non-linear crowd data.

2.2 Density Map Oriented Approaches
Density map-based methods generate visual
representations of crowd distribution and are
essential for analyzing traffic and crowd movement
is the

approach but has limitations in highly crowded

[91. A common method Gaussian-based

areas, where it can be difficult to distinguish
between closely packed individuals [10]. To
overcome this, the Focal Inverse Distance

Transform (FIDT) map enhances head localization
by refining visibility around densely packed
individuals, it effective [11]
monitoring and management.

making in crowd

2.3 Deep Learning Oriented Approaches

Deep learning models like Convolutional Neural
Networks (CNNs) [12] and Recurrent Neural
Networks (RNNs), particularly Long Short-Term
(LSTM) [13][14]
significantly improved crowd density estimation by

Memory networks have

capturing spatial and temporal dependencies in
crowd data. However, traditional CNNs and RNNs

often struggle with capturing complex
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spatial-temporal interactions in crowded scenes. The
CNN-LSTM combination [15], improves spatial and
temporal modeling.

However, challenges like

increased computational complexity, sensitivity to
motion blur, and the need for extensive annotated

data persist.

[ll. PROPOSED CROWD DENSITY
PREDICTION FRAMEWORK

The
framework consists of two approaches, the series
method and the parallel method.

proposed  crowd  density  prediction

3.1 General Methodology Framework
The
deep-learning framework that combines convLSTM

methodology  involves  developing a
with multi-head attention to predict future crowd
density. The process begins with generating crowd
FIDT method, which

enhances the precision and reliability of traditional

density maps using the

density map representations. These density maps
serve as input to the deep learning models.

The convLSTM model integrates the strength of
CNN and LSTM efficiently capturing both spatial
and temporal dependencies. CNNs are effective at
modeling short-term spatial features, while LSTMs
exploits sequential information. So adding both in a
single model captures the intricate dependencies in
an efficient way compared to individual models.

To further
multi-head attention mechanism is applied. this

improve data representation, the

technique enhances the model’s ability to focus on
different parts of the input sequence, capturing
long-term  dependencies by analyzing weight
vectors across multiple time instants. By tapping
into latent features, model achieves more accurate
predictions. The hybrid model of convLSTM and
multi-head attention addresses the challenges of
effectively

crowd movement uncertainties by

Preprocessing

Input image
s

Attention
Mechanism

Fig. 1 Model architecture of proposed method (series).

Predicted
density map

capturing short-term and long-term dependencies,
improves the accuracy of crowd density prediction.

3.2 The Series Method

In the series method as shown in Fig. 1, the
serial addition of multi-head attention is applied
after convLSTM processing to tap the models
ability to focus on non-linearities and long-term
dependencies. The data generated by
convLSTM is refined through the
mechanism, which identifies critical time steps and

meat
attention

spatial regions relevant to crowd density prediction.
this process improves the prediction accuracy by
focusing on the weight vectors of long term
sequences. The refined output features are then
passed through dense layers, followed by a final
prediction layer.

3.3 The Parallel Method

The Parallel Method extends the capabilities of
the Series Method by processing the dataset into
the convLSTM and multi-head attention layers
simultaneously, as depicted in Fig. 2 capturing both
short-term and long—term dependencies
concurrently. The output from the convLSTM is
combined with the output from the multi-head
attention model’s
This
combined representation is then processed through

layer, enhancing the

understanding of the input crowd data.

dense layers, leading to an enriched representation
and improved crowd density prediction.
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Preprocessing

Predicted
density map

Fig. 2 Model architecture of proposed method
(parallel).

IV. Experimental Results

For our experimental analysis, we utilized the
Fudan-ShanghaiTech (FDST) dataset [16], which
offers a comprehensive set of images and videos
for crowd counting. The dataset includes 150,000
images from 100 videos across 13 diverse scenes.
from this we used a total of 9000 images. 70% for
training, 20% for validation and 10% for testing.

The experiments were conducted on a system
equipped with NVIDIA Quadro p5000 GPU. The
models were implemented using tensorflow 2.6 with
CUDA 114 running on python 3.7. The Adam
optimizer was used with learning rate of 0.001. To
assess the performance of our deep learning model,
we use two key metrics: Mean Absolute Error
(MAE) and Mean Squared Error (MSE). MAE
measures average prediction error and
affected by making it suitable for
non—normal residual errors. MSE, on the other
hand, errors

emphasizing robustness in sequential predictions.

is less
outliers,
penalizes  larger more  heavily,
The performance comparison in Fig. 3 shows
both in parallel and
series configurations, outperform baseline
convLSTM and LSTM models. The parallel model
achieved the lowest MAE (0.024) and MSE (0.020),

demonstrating superior accuracy in crowd density

that the proposed models,

prediction by effectively addressing non-linearity
and sparsity. The series model also showed strong
performance with an MAE of 0.025 and MSE of
0.023, though slightly higher than the parallel
model. The series model is simpler and less prone
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to over fitting, making it potentially better for less
sparse data.

The visual crowd density predictions in Fig. 4,
compare proposed parallel and series models,
CNN-LSTM, and convLSTM models against the
ground truth. The proposed parallel model closely
matches the gat, effectively capturing
spatio—temporal dependencies.

The series model also performs well, showing
similar density trends. In contrast, CNN-LSTM and

convLSTM  models with

Model Performance Comparison

show more deviation,
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Fig. 3 Model performance of crowd density
prediction.

convLSTM struggling to capture spatiotemporal
dependencies, leading to underestimations in certain
regions. The CNN-LSTM, while more generalized,
still falls short compared to the proposed models.
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Fig. 4 Comparison results of crowd density
prediction.

CNN-LSTM

The detail comparison of the proposed models
with other DL architectures is shown in the table
1. based on the criteria, series model captures
detailed dependencies but is complex and inflexible,
while parallel convLSTM provides better flexibility

and broader feature representation but increases
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convLSTM
spatiotemporal data with moderate complexity, while
CNN-LSTM, being simpler, separates spatial and
temporal tasks, making it more efficient but less

complexity. efficiently  integrates

powerful in capturing temporal features. series

model is computationally expensive, Whereas

CNN-LSTM is more resource-efficient.

Table 1. Comparison of proposed models with
existing architectures.
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V. Conclusion

This work compares CNN-LSTM, convLSTVM,
and the
attention—based

proposed  spatio-temporal multi-head

series and parallel models for
crowd density prediction. The proposed models,
leveraging advanced attention mechanisms, excel in
both

dependencies,

capturing long-term  and  short-term

resulting in significantly improved
accuracy. The parallel model achieved 13.04% better
MSE than the series model, 57.44% better than
convLSTM, and 59.18% better than CNN-LSTM.
Future work will focus on optimizing these models
for real-time applications by reducing computational
overhead and enhancing generalizability across

diverse datasets.
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