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요 약

스마트 그리드로의 전력망 현대화는 효율성, 신뢰성, 지속 가능성 측면에서 많은 이점을 제공합니다. 그러나 

복잡하고 상호 연결된 스마트 그리드 시스템은 이상 탐지와 그리드 회복력 유지에 있어 새로운 과제를 제시 

한다. 기존의 이상 탐지 방법은 스마트 그리드 데이터의 동적이고 이질적인 특성에 적응하기 어려워, 이상 탐

지 및 완화에 있어 비효율성을 초래한다. 이러한 문제를 해결하기 위해 본 연구는 TensorFlow 프레임워크를 

활용한 딥러닝 기술을 통해 스마트 그리드 이상 탐지와 회복력을 향상하는 새로운 접근 방안을 제안한다. 연

구의 목표는 두 가지로 나뉜다. 첫째, 스마트 그리드 데이터 내에서 이상을 정확하게 감지할 수 있는 고급 딥

러닝 모델을 개발하고, 둘째, 감지된 이상에 대해 선제적으로 대응하고 이를 완화하여 그리드 회복성을 강화하

는 것이다. 

ABSTRACT

Modernizing the power grid to a smart grid offers many benefits in terms of efficiency, reliability, and sustainability. 

However, complex and interconnected smart grid systems present new challenges in detecting anomalies and maintaining grid 

resilience. Existing anomaly detection methods have difficulty adapting to the dynamic and heterogeneous characteristics of 

smart grid data, resulting in inefficiency in anomaly detection and mitigation. To solve these problems, this study proposes a 

new approach to improve smart grid anomaly detection and resilience through deep learning technology using the TensorFlow 

framework. The goals of the research are divided into two. First, to develop an advanced deep learning model that can 

accurately detect anomalies within smart grid data, and second, to strengthen grid resilience by proactively responding to and 

mitigating detected anomalies.
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Ⅰ. Introduction

The change of traditional power grids into smart 

grids shows an important leap forward in the realm 

of energy infrastructure. Smart grids leverage 

advanced technologies such as sensors, 

communication networks, and data analytics to 

improve the efficiency, reliability, and sustainability 

of electricity delivery systems. By enabling 

bidirectional communication and real-time 

monitoring of grid operations, smart grids empower 

utilities, consumers, and regulators to make 

informed decisions, optimize energy usage, and 

respond effectively to changing demand patterns 

and environmental factors. However, the transition 

to smart grids introduces new complexities and 

challenges, particularly in the domain of anomaly 

detection and grid resilience. Unusual anomalous 

behavior in the smart grid can result from various 

factors, such as abnormal consumption patterns by 

users, faulty grid infrastructure, system outages, 

cyber-attacks, or instances of energy theft[1-5].

 Anomalies, which encompass a wide range of 

unexpected events or deviations from normal 

operating conditions, can have profound impacts on 

grid stability, service quality, and cybersecurity. 

These anomalies may arise from various sources, 

including equipment malfunctions, cyber-attacks, 

natural disasters, and changes in consumer 

behaviour. Traditional methods of anomaly detection 

in power grids often rely on rule-based approaches 

or statistical techniques, which may lack the 

adaptability and scalability required to effectively 

address the dynamic and heterogeneous nature of 

smart grid data. Many approaches have been 

proposed in the literature to address the anomaly 

detection problem. In addition to a variety of 

techniques, machine learning-based methods have 

been widely explored and utilized[6-9]. Moreover, 

ensuring the resilience of smart grids, defined as 

their ability to withstand and recover from 

disruptions, requires proactive measures and rapid 

response capabilities to minimize downtime and 

mitigate potential cascading effects. Considering 

these challenges, there is a growing interest in 

leveraging advanced machine learning techniques, 

particularly deep learning, to enhance smart grid 

anomaly detection and 8 resilience. Deep learning 

algorithms, with their ability to automatically learn 

hierarchical representations of data, excel at 

capturing complex patterns and dependencies in 

large-scale datasets. TensorFlow, an open-source 

deep learning framework developed by Google, has 

emerged as a leading platform for building and 

deploying sophisticated neural network models, 

offering scalability, flexibility, and ease of 

use[10-15]. 

This research proposes a novel approach to 

address the dual objectives of enhancing smart grid 

anomaly detection and resilience through deep 

learning, with a specific focus on utilizing the 

TensorFlow framework. By harnessing the power 

of deep learning, we aim to develop robust and 

adaptive models capable of accurately identifying 

anomalies in smart grid data and devising proactive 

strategies to enhance grid resilience. In the 

subsequent chapters, we will delve into the 

intricacies of smart grid anomaly detection and 

resilience, review existing literature on deep 

learning applications in the field, outline our 

methodology for model development and evaluation, 

present our experimental results and findings, and 

discuss the implications of our research for the 

future of smart grid security and resilience. 

Through this endeavor, we seek to contribute to 

the advancement of knowledge and technology in 

the domain of smart grids, ultimately paving the 

way for more reliable, efficient, and sustainable 

energy systems in the digital age[16-18].
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Ⅱ. Methodology

2.1 Data Collection and Preprocessing.

The dataset used in this study was sourced 

from Kaggle, featuring synthetic data from 

simulations of smart grid stability. Initially, the 

dataset comprised 10,000 observations, which were 

augmented through permutations of participant 

nodes to create a dataset with 60,000 observations. 

This augmentation enhanced the diversity and 

scope of the data, ensuring it was representative of 

varied grid conditions. The data consisted of 12 

predictive features and two dependent variables, 

namely 'stab' and 'stabf', where 'stabf' was 

retained as the sole target variable for binary 

classification of grid stability[21-24].

Augmented   Dataset (60.000 observations)

Architecture Folds Epochs Confusion   Matrix Accuracy

24-12-1 10 10
3795 56

96.27%
168 1981

24-12-1 10 20
3780 71

97.50%
79 2070

24-12-1 10 50
3788 63

97.93%
61 2088

24-24-12-1 10 10
3778 73

97.20%
95 2054

24-24-12-1 10 20
3763 88

97.58%
57 2092

24-24-12-1 10 50
3797 54

97.98%
67 2082

표 1. 증강된 데이터셋으로 얻은 결과.

Table 1. Obtained results with augmented dataset

Preprocessing steps included shuffling the data, 

handling missing values, and transforming the 

dataset into Numpy arrays for model training. 

Given that the dataset was well-behaved, no 

significant feature engineering was necessary, 

enabling direct transition to model training[19-20].

2.2 Model Architecture and Training

A Convolutional Neural Network (CNN) model 

was developed to perform the classification task of 

identifying stable and unstable grid states. The 

architecture consisted of:

- One input layer with 12 input nodes (matching 

the number of predictive features),

- Three hidden layers (24, 24, and 12 nodes, 

respectively), [Fig 3]

- One single-node output layer to classify stable 

(1) or unstable (0) grid states.

The model used the 'relu' activation function for 

the hidden layers due to its effectiveness in 

handling numerical data within ranges, and the 

'sigmoid' function for the output layer to support 

binary classification. The model was compiled using 

the 'adam' optimizer and 'binary_crossentropy' loss 



JKIECS, vol. 19, no. 06, 1215-1224, 2024

1218

function, with accuracy as the primary evaluation 

metric. The hidden layers due to its effectiveness 

in handling numerical data within ranges, and the 

'sigmoid' function for the output layer to support 

binary classification. The model was compiled using 

the 'adam' optimizer and 'binary_crossentropy' loss 

function, with accuracy as the primary evaluation 

metric.

Original   Dataset (10.000 observations)

Architecture Folds Epochs Confusion   Matrix Accuracy

24-12-1 10 10
596 28

93.20%
40 336

24-12-1 10 20
605 19

95.00%
31 345

24-12-1 10 50
603 21

94.40%
35 341

24-24-12-1 10 10
604 20

95.00%
30 346

24-24-12-1 10 20
604 20

94.90%
31 345

24-24-12-1 10 50
602 22

95.80%
20 356

표 2. 원본 데이터셋으로 얻은 결과.

Table 2. Obtained results with original dataset

Training was conducted using 10-fold 

cross-validation, ensuring robustness in model 

evaluation [Fig 1]. A total of 10 distinct validation 

sets were employed, with the model trained over 

varying epochs (10, 20, 50). Performance was assessed 

using a confusion matrix and evaluation metrics 

including accuracy, precision, recall, and F1-score.

2.3 Model Performance and Evaluation

The CNN model demonstrated superior 

performance in detecting anomalies in the smart 

grid data, achieving accuracy scores of up to 

97.93% on the augmented dataset with 50 epochs. 

Alternative architectures, such as Recurrent Neural 

Networks (RNNs) and Autoencoders, were also 

tested for comparison. 

The results showed that CNNs excelled in 

identifying both subtle and significant grid 

anomalies, making them an effective tool for 

real-time grid stability monitoring.

The study also compared deep learning models 

with traditional machine learning approaches such 

as Decision Trees, Random Forests, and Support 

Vector Machines (SVMs). The deep learning 

models, particularly CNNs, outperformed these 

traditional algorithms in terms of accuracy and 

overall prediction capability [Fig 2]. 

This methodology underscores the potential of 

deep learning to improve anomaly detection in 

smart grid environments, providing a robust 

framework for future research and development in 

this field.
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Ⅲ. Experiments and results

3.1 Experimental Setup

The experiments were conducted on a dataset 

comprising 60,000 observations, which includes both 

real-world and synthetic data from smart grid 

simulations. The dataset consists of 12 numerical 

features that capture important grid parameters 

such as power consumption, production, and 

reaction time, with the target variable being grid 

stability ('stable' or 'unstable'). The deep learning 

models used for the experiments include 

Convolutional Neural Networks(CNNs), Recurrent 

Neural Networks (RNNs), and Autoencoders. These 

models were trained andtested on an 80:20 

train-test split, with further validation performed 

using 10-fold cross-validation to ensure 

generalization. The evaluation metrics used for 

assessing the performance of each model were:

Accuracy: Proportion of correctly predicted 

stability states.

Precision: Ratio of true positive predictions to all 

predicted positives.

Recall: Ratio of true positives to all actual 

positives.

F1 Score: Harmonic mean of precision and recall.

AUC (Area Under the ROC Curve): A measure 

of model performance based on its ability to 

distinguish between classes.

Additionally, correlation matrix for dataset 

attributes and classification performance for 

confusion matrix is shown in Fig 5 and 4 

respectively.

3.2  Model Training

The training of models was conducted using the 

following configurations:

CNN: Three hidden layers with 24, 24, and 12 

nodes, and the ReLU activation function for hidden 

layers and sigmoid for the output layer [Fig 3].

RNN (LSTM): A 2-layer LSTM model designed 

to capture time-series dependencies.

Autoencoder: An unsupervised anomaly detection 

model that attempts to reconstruct the input and 

flags significant deviations as anomalies.

그림 1. 모델 평가
Fig 1 Model Evaluation.

그림 2. CNN 모델의 정확도와 손실.
Fig 2. CNN model accuracy and loss.

All models were compiled using the Adam 

optimizer and binary cross-entropy as the loss 

function, with accuracy as the key performance 

metric. Each model was trained using 50 epochs for 

convergence, and the results were recorded for 

each configuration.

3.3 Results and analysis

The performance of each model is summarized in 

Table 1. The CNN outperformed other models in 
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그림 3 모델 정의

Fig 3. Model Definition

그림 4. 분류 성능 - 혼동 행렬.

Fig 4. Classification performance - Confusion 

matrix

terms of accuracy and F1-score, achieving a 

classification accuracy of 97.5% and an F1-score of 

95.2%. RNNs, while effective, showed slightly lower 

performance, with an accuracy of 92.6%. 

Autoencoders, being unsupervised, also performed 

well, with an accuracy of 93.4%.

Deep learning models consistently outperformed 

traditional machine learning algorithms such as 

decision trees and random forests. The CNN, in 

particular, demonstrated superior performance across 

all metrics, making it an ideal choice for smart grid 

anomaly detection. RNNs, with their capability to 

handle sequential data, performed well but required 

longer training times. Autoencoders, as 

unsupervised models, provided solid anomaly 

detection results, particularly in identifying subtle 

anomalies in the dataset.

Accuracy per the confusion matrix: 97.73%

Start time 2024-07-28 21:12:07.644145

End time 2024-07-28 21:56:07.244678

Time elapsed 0:43:59.600533 

Augmenting the dataset with synthetic data 

increased model accuracy, particularly for deep 

learning models. The CNN model saw a 3% 

improvement in accuracy after the dataset was 

expanded from 10,000 to 60,000 observation and 

comparison can be seen in Table 1 and Table 2. 

This confirms the importance of having a large and 

diverse dataset for training deep learning models in 

anomaly detection tasks.

The results demonstrate the effectiveness of deep 

learning models in detecting grid stability 

anomalies. The high performance of CNNs indicates 

that convolutional layers are highly effective in 

capturing spatial relationships between grid 

parameters, which helps in detecting local patterns 

and irregularities in the smart grid data. RNNs, 

while effective in handling time-series data, showed 

slightly lower performance due to the complexity of 

capturing long-term dependencies. Autoencoders, 

though unsupervised, still provide value in anomaly 

detection, especially when labeled data is limited.

Ⅳ. Future work

As the current research successfully applied deep 

learning techniques to enhance anomaly detection 

and resilience in smart grids, several areas warrant 
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그림 5. 데이터셋 속성에 대한 상관 행렬.

Fig 5. Correlation matrix for dataset attributes.

further investigation and development.  While the 

developed models performed well on the provided 

dataset, testing them across more diverse smart 

grid architectures and alternative datasets will 

ensure that the solutions are robust and 

applicable across various grid topologies. Future 

work should focus on evaluating these models 

under different configurations and integrating 

real-world grid data.  Although this study 

implemented machine learning models at a 

theoretical level, scaling these solutions for 

real-time grid monitoring systems remains an open 

challenge. Further research could explore optimizing 

model architectures to ensure faster inference times, 

particularly in situations where real-time anomaly 

detection is critical.  The work primarily utilized 

Convolutional Neural Networks (CNNs) and 

Recurrent Neural Networks (RNNs). Future 

research could explore hybrid models that combine 

deep learning with other algorithms, such as 

reinforcement learning or graph-based techniques, 

to further enhance model accuracy and adaptability.  

Expanding the feature set beyond the current 

parameters could also improve model performance. 

For example, introducing more detailed consumer 

behavior data or grid component data (e.g., 

transformer states) could provide a more 

comprehensive understanding of potential anomalies.  

As smart grids are increasingly exposed to cyber 

threats, it would be beneficial to extend this 

research by integrating anomaly detection models 

capable of identifying cybersecurity threats 

alongside operational anomalies. Developing a 

unified framework for both cyber and operational 

anomaly detection could significantly enhance smart 

grid security.  Given that smart grids interface 

with dynamic energy markets, future work could 

also examine how deep learning models could 

predict market-driven instability factors, such as 

fluctuating energy prices or changing consumer 

demand patterns. By addressing these challenges, 

future research can help further refine and 

operationalize the models, contributing to the 

development of smarter, more resilient energy grids.

V. Conclusion

In this study, deep learning has shown great 

potential in enhancing smart grid anomaly detection 

and resilience. With increasing complexity and 

dynamism in smart grid operations, traditional 

methods struggle to keep up. Our approach focused 

on leveraging advanced neural network models, 

particularly within the TensorFlow framework, to 

improve both detection accuracy and response 

strategies. By implementing Convolutional Neural 

Networks (CNNs), Recurrent Neural Networks 

(RNNs), and Autoencoders, we were able to tackle 

the non-linear and high-dimensional nature of 

smart grid data. The ability of deep learning 

models to autonomously extract features, without 

the need for manual intervention, proved vital in 

handling the diverse and complex datasets 

associated with grid stability and energy 

management. Ultimately, deep learning serves as a 
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powerful tool in modernizing smart grids, enabling 

better stability management, quicker anomaly 

detection, and more proactive resilience strategies, 

all of which are critical to meeting the demands of 

future energy systems.
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