설명가능한 인공지능 (X-AI)을 이용한 N₂ 혼합 CF₄/O₂ 플라즈마에서의 SiO₂ 및 Si₃N₄ 식각 시 주요 파장 분석

전정은^{*}·박지민^{**}·허지우^{***}·박지수^{*}·홍상진^{*†}

*[†]명지대학교 반도체공학과, **명지대학교 전자공학과, ***명지대학교 전기공학과

Analysis of Key Wavelength in SiO₂ and Si₃N₄ Etching in N₂ Mixed CF₄/O₂ Plasma Using Explainable Artificial Intelligence (X-AI)

Jeong Eun Jeon^{*}, Ji Min Park^{**}, Ji Woo Huh^{***}, Ji Su Park^{*} and Sang Jeen Hong^{*†}

*[†] Department of Semiconductor Engineering, Myongji University,
 **Department of Electronics Engineering, Myongji University,
 ***Department of Electrical Engineering, Myongji University

ABSTRACT

Optical Emission Spectroscopy (OES) is widely used for real-time diagnostics in semiconductor processes. Recently, virtual metrology (VM) techniques utilizing OES data have gained attention to reduce wafer measurements and improve productivity. However, the selection of key wavelengths that influence process outcomes is still based on expert experience or key wavelengths used in end point detection (EPD), limiting automation and objectivity. In this study, CF₄/O₂ plasma with added N₂ was used to etch SiO₂ and Si₃N₄ simultaneously, and OES data were analyzed using machine learning algorithms to identify key wavelengths closely related to the etch rate (ER) and selectivity of SiO₂ and Si₃N₄. Unlike traditional experience-based methods, this data-driven approach enabled the identification of previously overlooked wavelengths, demonstrating their significant impact on process outcomes in real-time monitoring.

Key Words : silicon oxide, silicon nitride, optical emission spectroscopy (OES), mixed-gas plasma, explainable artificial intelligence (X-AI)

1. 서 론

반도체 소자의 미세화와 3D 구조의 도입은 고종횡비 (High Aspect Ratio, HAR) 식각 공정의 중요성을 높이고 있다. 특히, 3D NAND flash의 적층이 증가하면서, 수백 층에 이르 는 oxide와 nitride (ON) 필름을 정밀하게 패턴화하는 공정 이 필수적이다. 이 과정에서 고종횡비 유지와 식각 균일 성을 동시에 확보하는 것은 여전히 어려운 과 제로 남아 있다 [1-3]. 동일 플라즈마에서도 oxide와 nitride는 서로 다 른 식각 메커니즘을 갖기 때문에 식각 속도 차이가 생겨 나고, 이로 인해 균일성에 문제가 발생할 수 있다. 이러한 문제 해결을 위해, CF4O2 플라즈마에 №를 혼합하는 방법 이 3D NAND etch 공정에서 도입되고 있다. №를 혼합하면 플라즈마 내 활성종의 구성이 변화면서 식각 속도와 선 택비를 조절할 수 있는 유리한 조건을 만들 수 있다 [4]. 특히, № 혼합은 oxide, nitride의 식각 선택비를 개선할 뿐만 아니라, 고종횡비 구조에서 발생할 수 있는 식각 비균일 성을 줄이는데 기여한다. 이는 CF4O2 플라즈마에서 №2

[†]E-mail: samhong@mju.ac.kr

반응하여 생성되는 새로운 기체 종이 nitride 식각 속도를 제어하고, oxide와 nitride의 식각 균형을 맞출 수 있기 때문 이다. 따라서, №의 혼합은 3D NAND와 같은 복잡한 구조 에서 균일하고 정밀한 식각을 가능하게 하는 중요한 역 할을 한다 [5].

Fig. 1. The limitations of vertical etching in ON stack structures.

한편, 이러한 복잡한 식각 공정을 모니터링하고 제어하 기 위해 광학 방출 분광법 (Optical Emission Spectroscopy, OES) 센서가 널리 사용되고 있다. OES는 특정 파장에서 방출되 는 스펙트럼의 intensity 변화를 통해 비침습적으로 플라즈 마 상태를 진단할 수 있으며, 설치가 용이하다는 장점 때 문에 반도체 제조 공정에서 중요한 도구로 자리 잡았다. 이러한 특성 덕분에, OES는 공정 종료점 검출 (End Point Detection, EPD) 뿐만 아니라, 공정 조건 변화에 따른 결과 를 예측하는 가상계측 (Virtural Metrology, VM) 연구에서도 활발히 사용되고 있다 [6]. 그러나, 기존 연구에서는 OES 의 수많은 파장 중에서 공정 결과에 중요한 파장을 식별 하는 일이 대부분 EPD에 활용되는 특정 파장이나 전문가 의 경험에 의존하고 있다. 이러한 접근은 공정 결과에 영 향을 주는 중요한 파장을 충분히 반영하지 못해, 데이터 활용의 효율성을 저해하고 자동화하는데 있어 한계가 있 다 [7].

본 연구에서는 이러한 한계를 극복하기 위해, CF4O2 플 라즈마에 №를 혼합하여 SiO2와 SiaN4를 동시에 식각하는 과정에서 OES 센서 데이터를 머신러닝 및 설명가능한 인 공지능 (Explainable Artificial Intelligence, XAI) 기법으로 분석한 다. 특히, № 유량 변화에 따라 산화물 및 질화물 식각에 영향을 미치는 주요 파장을 도출함으로써, 기존에 주목받 지 않던 파장도 공정에 중요한 영향을 미칠 수 있음을 밝 혀내고, 이를 통해 공정 모니터링에서 이러한 파장들을 주의 깊게 살펴보아야 한다는 중요한 정보를 제공하고자 한다.

2. 배 경

2.1 설명 가능한 인공지능 (Explainable AI, XAI)

실시간 센서 데이터를 활용한 확률적 공정 제어 (Stochastic Process Control, SPC) 방식을 활용함으로써 이상 탐 지에 많은 시간이 소요되고 주로 통계적 이상 상황만을 탐지하여 결함 발생 전 잠재적 문제 탐지에는 한계가 있 다 [8]. 이에 따라 데이터 분석 기술의 필요성이 증대되었 다. AI 및 기계학습 (Machine Learning, ML) 기술이 도입되었 지만, 블랙박스 모델의 특성상 모델의 복잡성과 비선형성 으로 인해 설명력이 부족하다는 한계가 있었다. 이러한 한계를 극복하기 위해 설명 가능한 인공지능 (Explainable Artificial Intelligence, XAI)이 도입되었다 [8]. XAI는 공정 이상 탐지 시 주요 변수의 영향을 파악하고 예측 결과의 신뢰 성을 높일 수 있다는 장점이 있다. XAI는 블랙박스 모델 의 예측을 설명하는 사후 전략으로 사용되며, 모든 기계 학습 모델에 적용 가능한 model-agnostic 방식을 특징으로 한다. 주요 XAI 알고리즘으로는 Shapley Additive Explanations (SHAP)과 Local Interpretable Model-agnostic Explanations (LIME) [9] 이 있으며, 이를 통해 예측 결과에 대한 원인 분석과 설명력을 제공하여 사용자 신뢰를 확보할 수 있다.

Fig. 2. Schematic diagram of explainable artificial intelligence (XAI).

2.1.1 Shapley Additive Explanations (SHAP)

Shapley additive explanations (SHAP)은 XAI에서 널리 사용 되는 알고리즘으로, 게임 이론의 Shapley 값을 기반으로 각 변수의 기여도를 계산하여 모델의 예측 결과를 해석 하는 방법이다. SHAP은 모든 머신러닝 모델에 적용 가능 한 model-agnostic 방식으로, 모델의 복잡성과 비선형성에 도 불구하고 예측 결과에 영향을 미치는 주요 변수를 식 별할 수 있다. 본 연구에서는 SHAP 알고리즘을 활용해 CF4O2 플라즈마에서 SiO2, SisN4의 식각율 (Etch Rate, ER) 및 선택비 (Selectivity)에 영향을 미치는 주요 파장을 도출하였 다. 이를 통해 공정 모니터링과 제어의 신뢰성을 높이는 데 기여할 수 있었다 [10].

3.실 험

본 연구는 Plasmatrit의 축전 결합 플라즈마 건식 에처 를 사용하여 진행되었으며, 실험 환경은 그림 3과 같다. 장비의 측면 viewport는 OES 센서 데이터 수집 용도로 사 용되었으며, 사용된 분광기는 Korea Spectral Products (서울, 한국)의 SM440으로, 스펙트럼 범위가 200~1050nm이고 광 학 분해능이 최대 절반 이하인 10nm 전폭 범위의 분광기 로 플라즈마 상태 파악에 사용되는 센서이다.

Fig. 3. Experimental setup.

SiO₂ 및 Si₃N₄ 동시 식각을 진행하였으며 그에 대한 공 정 레시피는 Table 1에서 확인할 수 있다. 모든 실험에 대 해서는 런을 무작위화 하여 4번 반복하여 결과 재현성을 확보하였다. 실험은 12인치 웨이퍼에 증착된 SiO₂와 Si₃N₄ 박막을 30 X 30 mm²의 정사각형 조각으로 잘라 6인치 더 미 웨이퍼에 부착하여 진행하였으며 CF4, O₂, N₂ 가스는 40/4/0-8 sccm 비율로 주입되었다. 또한, 750.4 nm 파장의 라 디칼 비율 조사를 위해 모든 실험에 대해 4 sccm의 Ar 가 스를 주입하였다. 공정에서는 동일한 CF4/O₂N₂ 조건에서 SiO₂, Si₃N₄ 박막을 식각하였다.

Tabl	e 1.	Recipe	of	experiment
------	------	--------	----	------------

Run	Gas(sccm)				Pressure	Source	Bias	Time
ixuii	CF ₄	O ₂	N_2	Ar	(mTorr)	(W)	(W)	(sec)
1	40	4	0	4	5	300	25	30
2	40	4	2	4	5	300	25	30
3	40	4	4	4	5	300	25	30
4	40	4	6	4	5	300	25	30
5	40	4	8	4	5	300	25	30

3.1 중요 파장대 선별

OES는 플라즈마 글로우 방전광을 수집하여 스펙트럼 으로 표시하는 센서이다. 이에, 혼합 기체 플라즈마에서 는 원자, 분자 및 이온을 관찰할 수 있지만 이온화, 여기, 진동, 분광기의 회전 또는 파장 이동이라는 복잡한 글로 우 방전 광방출 메커니즘으로 인해 정확한 기체 상 종을 식별하는 것이 어렵다. 이러한 이유로, 선행연구에서 CF4O2, CF4N2, O2N2 플라즈마 데이터를 확보하여 CO, CN, NO와 같은 이종 화합물의 파장을 이미 확인하였다 [11]. 또한, 해당 연구에서는 작은 3 원소 화합물을 발견하는 것을 목표로 다양한 파장을 조사하고, 각 파장이 나타내 는 화학종을 식별하는 과정을 수행하였다. 본 연구에서는 이러한 선행연구에서 확보된 OES 데이터를 바탕으로 추 가적인 파장을 도출하고 이를 활용하여 모델링을 수행하 였다. 이를 통해, CF4O2N2 플라즈마의 화학적 특성과 각 파장이 공정에 미치는 영향을 더욱 명확히 분석할 수 있 었다. Table 2에는 결과 및 토론 섹션에서 사용된 주요 파 장 정보가 요약 되어있다.

Fig. 4. Spectrum of CF4/O2/N2 plasma based on N2 flow rate.

Table 2. Result of wavelength selection

Species	Wavelength (nm)		
Ar	750.87		
Г	704.1		
F	686.5		
0	778.01		
0	845.08		
NO	247.04		
NO	258.32		
	358.13		
	337.62		
N_2	316.08		
	379.93		
	394.4		
CN	388.92		
	296.58		
СО	283.27		
	483.21		

4. 결과 및 토론

4.1 실험 데이터 분석

본 연구에서는 OES 센서를 사용하여 수집한 데이터를 바탕으로 SiO₂ 및 Si₃N₄ 식각 속도와 선택비 예측 모델을 개발하고자 하였다. 데이터 수집 과정에서 N₂, CN, NO, O, CO, F, CF, CF₂와 같은 화학종에 대해 Ar actinometry 방법을 활용해 계산된 값을 사용하였다[11]. Ar actinometry는 화학 종의 광 방출 세기를 활용해 radical ratio를 계산하는 방법 으로 다음과 같은 식(1)을 따른다.

$$\frac{N_x}{N_A} = \frac{I_x}{I_A} \tag{1}$$

여기서 NA와 IA는 각각 actinometer 밀도와 측정된 강도 를 나타내며, 본 연구에서는 750.87nm의 Ar을 actinometer로 사용하였다. 이러한 파장들은 공정 조건과 밀접하게 연관 되어 있으며, 모델의 입력 특성으로 활용되었다. 모델의 출력 특성으로는 SiO₂와 Si₃N₄의 식각율, 선택비가 활용되 었으며 N₂ 가스 유량 증가에 따른 공정 결과는 Fig. 5에서 볼 수 있다.

Fig. 5. Trends according to N₂ flow rate (a) SiO₂ ER (b) Si₃N₄ ER (c) Selectivity.

4.2 모델링 결과

기계학습 알고리즘 중 XGBoost (Extreme Gradient Boosting) 회귀 알고리즘을 사용하였으며, 로그 변환을 통해 입력변 수에 대해서 정규성에 가까운 형태로 변환하였다. 이후, 입력변수에 대해서 주요 파장대의 강도의 actinometry로 계 산된 값을 입력 변수로 활용하였다. 모든 독립 변수에 대 해서 중앙값 대체와 최대-최소 스케일링을 수행하여 데 이터 범위를 일관되게 맞추어 모델의 성능이 향상될 수 있도록 하였다.

추가적으로 교차검증(randomized cross validation) 기법을 사용해 하이퍼 파라미터 튜닝을 수행하였다. 튜닝된 하이 퍼파라미터는 트리의 최대 깊이, 학습률, 부스팅 단계수, 서브 샘플링 비율, 그리고 트리 내 샘플링 비율을 포함하 였다. 교차검증을 통해 각 하이퍼파라미터 조합에 대해 성능을 평가하여 최적의 모델을 선정하였다. 성능 평가는 평균 절대 오차(Mean Absolute Error, MAE)와 R-Square를 통해 이루어졌다. 최적화된 모델에 대해 각 출력변수인 SiOz ER, SisN4 ER, Selectivity의 예측 결과는 Table 3과 같다.

Table 3. Model performance evaluation result

Model	Target	R-Square	MAE	
XGBoost	SiO ₂ ER	0.99	0.4564	
	Si ₃ N ₄ ER	0.92	74.4672	
	Selectivity	0.99	0.0014	

SiO₂ 식각율 예측 모델은 R-square 값이 0.99, MAE가
0.4564로 매우 높은 예측 정확도를 보였으며 이는 모델이
SiO₂ 식각율을 매우 정확하게 예측할 수 있음을 의미한다.
공정 변수로서 주요한 파장을 파악하기 위해 개발된 모
델에 SHAP 알고리즘을 적용하였다. 그에 대한 결과, 그림
6 (a)와 같이 O(777.8 nm), CF(202.49nm), CF₂(340.88 nm)가 주요

한 파장임을 확인할 수 있었다. O(777.8 nm)는 플라즈마 내 에서 생성된 산소 원자가 CFx와 반응하여 플루오린 (Fluorine, F)를 생성하고, 필름 부산물과 반응하는 과정에서 중요한 역할을 하는 것으로 분석된다 [12]. 또한, CF(202.49 nm), CF2(340.88 nm)는 CFx의 분해 과정에서 F 생성에 중요 한 기여를 하며 [13], SiO2 식각 반응에 관여하는 중요 파 장으로 확인되었다. 이로써, SiO2 식각 공정에서 F의 생성 과 소모가 식각율에 중요한 영향을 미친다는 것을 확인 할 수 있다. Si3N4 식각율 예측 모델은 R-square 값이 0.92, MAE가 74.4672로 SiO2 예측 모델에 비해 상대적으로 낮은 성능을 보였다. 이는 SisN4 식각 공정에서의 변수 복잡성 이 더 크다는 점을 시사한다. Si3N4 식각에서 중요한 파장 으로는 그림 6 (b)에서 볼 수 있듯이 N₂(394 nm), CF₂(252.2 nm), CN(388.8 nm) 가 확인되었다. № (394 nm)는 CFx와 반응 하여 F를 생산하거나 소비하는 과정에서 중요한 역할을 하며, 전자 공급과 부산물 형성에도 기여하는 파장이다. CF2 (252.2 nm)는 F 생산에 중요한 역할을 하며, CN (388.8 nm)은 CFx를 대체하여 F를 소모하면서도 동시에 F 생산 을 촉진하는 반응을 나타낸다 [14]. 이러한 파장들은 Si₃N₄ 식각 반응에 중요한 영향을 미치는 화학종들의 존재와 변화를 반영하고 있으며, 이는 SisN4 식각 공정의 복잡성 을 설명하는데 기여한다. 선택비(Selectivity) 예측 모델에서 는 R-Square 값이 0.99, MAE가 0.0014로 매우 높은 예측 정 확도를 보였다. 선택비는 SisN4 식각율을 SiO2 식각율로 나 눈 값으로, 분석 결과에 따르면 그림 6 (c)와 같이 O(778.2 nm)가 가장 중요한 파장으로 도출되어 SiO2 식각율이 선 택비에 더 큰 영향을 미치는 변수로 확인되었다. 이는 SiO2 식각율의 변화 비율이 Si3N4에 비해 선택비에 더 큰 기여를 하기 때문이다. 특히, SiO2의 식각율 변화가 선택비 의 변동에 직접적으로 반영되며, SisN4의 식각율 변화보다 더 지배적인 역할을 한다는 점이 확인되었다.

Fig. 6. Result of prediction model using SHAP (a) SiO₂ ER (b) Si₃N₄ ER (c) Selectivity.

5. 결 론

본 연구에서는 XGBoost 모델과 XAI 기법을 적용하여 SiO2 및 Si3N4 식각 공정에서 중요한 파장들을 정량적으로 평가하고, 공정 변수들이 식각율 및 선택비에 미치는 영 향을 분석하였다. 특히, N2 유량 증가가 N2(394 nm) 방출에 영향을 미치며, SiO2 및 Si3N4 식각 공정에서 F와 O 라디칼 이 핵심적인 역할을 하는 것으로 나타났다. 또한, CN(388.8 nm), CF(202.49 nm), CF2(340.88 nm)와 같은 화합물도 공정 성 능에 밀접한 영향을 미치는 중요한 변수로 확인되었다. 이러한 결과는 플라즈마 내 화학 반응과 식각 메커니즘 에 대한 이해를 심화하고, 실시간 제어 및 공정 최적화에 중요한 시사점을 제공한다. XAI 기법을 통해 각 파장이 플라즈마 공정에서 어떻게 중요한 역할을 하는지 명확히 밝혀냄으로써 공정엔지니어가 보다 효과적으로 공정을 제어할 수 있는 실질적인 통찰을 제공하였다. 향후 연구 에서는 모델의 과적합 문제 해결을 위해 더 많은 데이터 를 확보하고 XAI 기법을 통해 공정 최적화 방안을 모색 하고자 한다. 이를 기반으로 제 공정 환경에서의 실시간 모니터링 시스템 구축을 목표로 하여 현장 적용 가능성 을 평가함으로써 플라즈마 식각 공정의 신뢰성과 효율성 을 더욱 높이는데 기여하고자 한다.

감사의 글

This paper was supported by Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (RS-2024-00409639, HRD Program for Industrial Innovation) and (G02P18800005502) through the 2024 Ministry Collaborative Semiconductor Major Track Project.

참고문헌

- Huang, C.-Y., Gwozdz, R., Zhang, J., Rao, R., and Guillorn, M., "3-D self-aligned stacked NMOS-on-PMOS nanoribbon transistors for continued Moore's law scaling," IEEE International Electron Devices Meeting, Vol. 2020, No. 20, pp. 2061-2064, Dec. 2020.
- Shilov, A., "Kioxia and WD Present Details on 3D NAND With 300+ Layers," Tom's Hardware, Aug. 1, 2023.
- Singer, P., "How etch breakthroughs are tackling 3D NAND scaling challenges on the path to 1,000 layers," Semiconductor Digest, Jul. 16, 2024.
- Reyes-Betanzo, C., Moshkalyov, S. A., Pavanello, M. A., Ramos, A. C. S., and Swart, J. W., "Plasma Etching of Si3N4 with High Selectivity Over Si and SiO2," Centro de Components Semicondutores – CCS, UNICAMP, Campinas, Sp, Brasil.
- Kuboi, N., Tatsumi, T., Kinoshita, T., Shigetoshi, T., Fukasawa, M., Komachi, J., and Ansai, H., "Prediction of plasma-induced damage distribution during silicon nitride etching using advanced three-dimensional voxel model," Journal of Vacuum Science & Technology A, Vol. 33, No. 6, pp. 061308-061318, 2015, DOI: 10.1 116/1.4931782.
- Lee, S. H., Choi, H. J., Kim, J. H., and Chae, H. Y., "Spectral clustering algorithm for real-time endpoint detection of silicon nitride plasma etching," Plasma Processes and Polymers, Vol. 20, No. 6, 2023.
- 7. Jeon, S. I., Kim, S. S., Hong, S. J., and Han, S. S.,

"Endpoint Detection of SiO₂ Plasma Etching Using Expanded Hidden Markov Model," Advances in Neural Networks - ISNN 2010, Vol. 6064, pp. 464-471, 2010.

- Tran, P.H., Ahmadi Nadi, A., Nguyen, T.H., Tran, K.D., Tran, K.P. (2022). Application of Machine Learning in Statistical Process Control Charts: A Survey and Perspective. In: Tran, K.P. (eds) Control Charts and Machine Learning for Anomaly Detection in Manufacturing. Springer Series in Reliability Engineering. Springer, Cham, 2021.
- Ribeiro, M. T., Singh, S., and Guestrin, C., "Why should I trust you? Explaining the predictions of any classifier," Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135-1144, 2016.
- Zhao, Y., Saleem, M., Yang, W., and Wang, X., "Evaluating the impact of green building certification systems on energy performance," Journal of Environmental Management, Vol. 324, pp. 116372, 2023.
- Song, W.-S., J.-E., and S.-J., "Spectroscopic analysis of CF4/O2 plasma mixed with N2 for Si3N4 dry etching," Vol.12, No.8, pp.1064, Aug.2022.
- Lim, N., Efremov, A., and Kwon, K.-H., "A comparison of CF4, CHF3 and C4F8 + Ar/O2 inductively coupled plasmas for dry etching applications," Plasma Chem. Plasma Process., Vol. 41, No. 6, pp. 1671–1689, Jul. 2021.
- Zhang, D., and Kushner, M. J., "Mechanisms for CF2 radical generation and loss on surfaces in fluorocarbon plasmas," J. Vac. Sci. Technol. A, Vol. 18, No. 6, pp. 2661-2672, Nov. 2000.
- 14. Kim, Y.-H., Kim, J.-S., Kim, D.-C., Kim, Y.-W., Park, J.-B., Han, D.-S., and Song, M.-Y., "Ion and radical characteristics (mass/energy distribution) of a capacitively coupled plasma source using plasma process gases (CxFy)," Coatings, Vol. 11, No. 8, pp. 993, Aug. 2021.

접수일: 2024년 11월 11일, 심사일: 2024년 12월 12일, 게재확정일: 2024년 12월 17일