
IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.11, November 2024

62

Manuscript received November 5, 2024
Manuscript revised November 20, 2024
https://doi.org/10.22937/IJCSNS.2024.24.11.7

An Enhancement of Software Development Process using Reuse and
Visualization Techniques

Anas Bassam AL-Badareen
abdareen@aut.edu.jo

Aqaba University of Technology, Aqaba, Jordan

Summary
Software reuse is one of the main techniques used to enhance the
productivity of software development and the quality of software
products. This technique concerned in extracting software
components from legacy systems and reusing them in the
development of new software systems. The process of analyzing
and understanding the legacy systems in order to identify and
extract the intended components is difficult and time consuming.
Whereas several methods and tools were proposed and developed
in order to enhance the process of software reuse, there is no
attention paid to the understandability of the legacy systems and
the reusable components. This study proposes a new method for
software reuse enhanced by visualization technique. It concerns
about improving the understandability of software systems, and
reduce time and resources required for reuse.
Keywords:
Enhancement of Software Development Process, Reuse and
Visualization Techniques

1. Introduction

In recent decades, software reuse and software
complexity have been rapidly increased. Software reuse is
considered as one of the main aspects used to enhance the
productivity and reduce the cost of software development.
The white box reuse is the most used technique in software
reuse. It aims to retrieve and modify software components
from legacy systems and use them in developing new
software systems. The process of modifying software
components is a difficult task that needs to understand the
whole legacy system in order to identify the requirements
of the new modification. Software visualization is one of
the most used techniques to help the developers
understand the system structure easily allowing for
efficient software reuse results.

White box software reuse is performed based on
retrieving software components from reuse repositories or
legacy systems. In this type of reuse, the components that
are retrieved to be reused in new software development
were developed normally and the requirements of the new
software system were not considered [1] . Therefore, a
modification of the retrieved components is required
(Systematizing pragmatic software reuse, ACM 2012).
The ability of the retrieved components to be modified to
satisfy the new requirements is essential in software reuse.

Software visualization is mostly needed and it is widely
used in software maintenance, reverse engineering, and re-
engineering, where large and complex software systems
are needed to be understood from the source code [2].
Software visualization is the process of presenting a
software system visually. It is used to understand software
system efficiently and effectively. It helps for a better
understanding of the system architecture. The software
architecture involves the software elements, their
properties and the relationships among them [3, 4].

This work investigates using visualization for
improving the understandability of the legacy system in
context of software reuse. In addition, visualization is used
in order to reduce cost and effort of software reuse and
allows for efficient reuse results.

2. Literature Review

Instead of building a new system from a scratch,
software reuse enables the system developers to use the
existing components of the software [5]. Software reuse is
often addressed at the level of code or low-level design.
Therefore, reuse reduces the time of designing, writing
and testing new code [6].

Software reuse has been addressed as a fundamental
activity utilized in IT and non IT organizations. Kaindl [7]
presented and compared three approaches for software
reuse in contest of business process and requirements. First
approach deals with requirements reuse in the context of
product lines, the second approach is for software reuse
involving case-based reasoning, and the third approach
strives for automating software development through
reusing business knowledge.

After building a new system based on a reusable
software system it is important to evaluate the
performance of the reusable software component.
Mahmood et al. [8] proposed an attribute-based framework
for enabling the reuse to take place in the appropriate
environment. However, the framework suffers from
measuring PC performance requirements based on the new
generated software.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.11, November 2024

63

Kalotra and Kaur [9] have conducted a comparative
study on performance analysis of four reusable software
components; hibernate, spring, baits and Eclipse link.
Authors of this paper have also presented a way to build a
comparative analysis, in which the average execution time,
average heap usage, and average CPU utilization while
software reuse are addressed. Mikkonen et al. [10]
demonstrated the feasibility of the Web as a platform for
applications that are constructed using global, shared
online components and resources. They have also address
the present state of the practice regarding on-demand
software.

Achieving a systematic software reuse plays an
important role for building successfully new generated
software. Several methods have been therefore proposed
for achieving a systematic software reuse. Wang et al.
[11] discussed a method called “Model 1”. They have
adapted software developed by “Model 1” to the same
software but using SSH2 (Struts 2-Spring – Hibernate).
The adaption has shown many disadvantages for “model
1”.In addition, the adaption is required several rules to fits
the SSH2 framework. The rules could be appropriate for e-
government at systems, but they are not suitable for other
systems.

Recently, many researchers have discussed several
approaches extending software development models using
set of generic visualization recommendations [12, 13]. In
which, the aim was to allow context-aware application
developers to use relationship between context and
visualization techniques, and to increase awareness in
software development scenarios. In the same concern,
Vasconcelos et al. [14] have introduced visualization
techniques in terms of a software development. In this
paper, a context-oriented visualization recommendation
was established to improve awareness in software
development. An extended software development context
model was also described and used as a basis for
developing a customizable context-aware system in
context of software development activities.

An alternative context awareness model for software
development using software visualization techniques has
been presented in [14]. In addition, Oliveira [15] has
described additional visualization recommendations. This
includes examples of hypothetical context situations. A
Context-Oriented Visualizations model was implemented
in a simple way. However, it suffers from intuitive
representation form of software components.

The idea of the code visualization has been
introduced in many researches. Balogh and Beszedes [16]
have implemented a conversion tool. It processes the
basic source code metrics as input and generates a Mine
craft world with buildings, districts, and gardens. In

contrast, Lopez-Herrejon and Egyed [17] have described
three applications to raise the awareness of the
visualization in the area of the software product lines and
to spark the interest of the software visualization
community. However, both research papers have not
focused into the software reuse.

Software analysis plays an important role in building
the software and in determining its main characteristics.
Khan et al. [18] have presented a novel methodology
integrating software analysis and software visualization
tool via an interactive visual workflow approach. Their
standard software analysis tools have been limited in
supporting only the well-known metrics. Scarle and
Walkinshaw [19] have therefore presented the physics of
software exploration system, where it was variably
mapped to parameters of a physical model and visualized
software via practical system. The resulting visualization
was a dynamic scene, the relative positions of entities are
not determined by a fixed layout algorithms but by
intuitive physical notions. Using practical system has
motivated Jovanović et al. [20] to propose a data
visualization software architecture for unmanned aerial
vehicles which as a practical system.

3. The Proposed method

As shows in Figure 1, software reuse consists of four
main phases: analyze the legacy system and extract
software components, store the extracted components,
retrieve the stored components, and reuse the retrieved
components in the development of new software system.

The analyze phase intends to read the source code,
identify the components of the system (classes and
method) and their relationships, and visualized the
extracted components. The store phase allows developers
to identify the required components, write descriptions
about the selected components, and store them in the reuse
library. The retrieve phase allows the developers to search
in the library about software components and retrieve the
required components with their details. The last phase
described as reuse which intends to reuse the extracted
components for the development of new software system.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.11, November 2024

64

Fig. 1 Software Development Process using Reuse Techniques

The legacy system is a software system was
developed in the past either in house or out sourcing. The
components of the legacy system can be modified, adapted
and used according to other systems’ requirements. The
main problem faced by developers while dealing with
legacy systems is the understandability of its components.
In which, developers have to understand the system
architecture and the details of its components, in order to
identify the intended new components and the required
modifications.

The new system is a system currently under
development. Developers normally develop the
components of this system from scratch. Software reuse
helps the developers to use existing components that have
been developed in the past in order to save the cost of the
development. The components are extracted from the
legacy systems and reuse library.

The reuse library is a special database system used to
store the source code and the descriptions of the software
components. This library helps developers to classify,
store and retrieve software components efficiently. Table 1
proposed by [21] shows the general information required
in Reusable Software Components Library. The library
should include all information related to the stored
components. The information includes the component
description, the source code, the relationships between the
component and other components, the data types required
in the component, the values of the component’s quality
characteristics and the responsible information. This
simplifies the process of searching, understanding,
modifying and reusing the stored components.

The Analysis Process

System analysis is the process of analyzing the
software system in order to identify its components and the
relationships among them. The aim of this process is to
help developers understand the software system, which is
performed on the source code. Figure 2 shows the process
of system analysis.

Fig 2 The Process of System Analysis

System analysis is the process of reading the source
code and identifying the main components of the system
(classes), their contents and their relationships. The visual
representation aims to help developers to understand the
system’s architecture, the main functions and the
relationships among the system’s components. At this
level, the developers will be able to identify the classes
that could be reused. Extracting the classes and define
intended classes and any other classes that are required
along with their functions.

After identifying classes, a detailed description on the
contents of the classes and their relationships is required.
This allows developers to modify classes in the new
system properly. Class analysis identifies methods,
variables, relationships among methods, and relationships
with other classes. The visual representation of the class
helps developers to understand its architecture, and how it
could be modified and reused. As a result of this process,
developers will be able to make any modifications that
might be required for adaptation, and will be able to use
the extracted components properly.

The Store Process

Storing the extracted components in the reuse library
required some information about the asset/components that
are intended to be stored, in order to classify the
component and adding information that describe its
functionality and characteristics. This helps the developers
searching, identifying, modifying and adapting the
intended components into the new system. As presented in
Figure 3, the process starts with analyzing the extracted
component that intended to be stored, visualizing the
component in order to identify its characteristics,
classifying the component based on its extracted
characteristics, and finally, storing the component and its
details in the library.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.11, November 2024

65

Fig. 3 The Process of Storing the Extracted Component

The Retrieve Process

Software retrieve process is made during the
development of new software system in order to extract
the components that could be used in the development of
new software system. As presented in Figure 4, the process
starts with searching for the available components that are
stored in the library and that could be used in the
development of the new software system. The retrieved
component is analyzed and visualized in order to measure
the degree of its suitability to the requirements of the new
software system, and in order to identify any modifications
that are required for adaptation.

Fig. 4 The process of retrieving software component

4. Conclusion

This work has considered on the enhancement of
software reuse process. Developers continuously face
problems in analyzing and extracting reusable software
components from legacy systems. It is difficult to
understand large size of software systems in short time and
extract some useful parts, also it is difficult to retrieve and
understand the reusable components already stored in the
library. Therefore, a new method for software reuse
integrated with software visualization was proposed in this
work.

For future work, the proposed method is required
to be evaluated by a team of experts in software
development in order to measure its suitability and
consistency with the development process. Moreover, the
applicability of the proposed method is required by
applying it on a case study.

References
[1] A. B. Al-Badareen, M. H. Selamat, M. A. Jabar, J. Din,

and S. Turaev, "An Evaluation Model for Software
Reuse Processes," in Software Engineering and
Computer Systems: Springer, 2011, pp. 586-599.

[2] R. Francese, M. Risi, and G. Scanniello, "Enhancing
Software Visualization with Information Retrieval," in

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.11, November 2024

66

Information Visualisation (iV), 2015 19th International
Conference on, 2015: IEEE, pp. 189-194.

[3] Z. Sharafi, "A systematic analysis of software
architecture visualization techniques," in Program
Comprehension (ICPC), 2011 IEEE 19th International
Conference on, 2011: IEEE, pp. 254-257.

[4] F. Fittkau, A. Krause, and W. Hasselbring, "Exploring
software cities in virtual reality," in Software
Visualization (VISSOFT), 2015 IEEE 3rd Working
Conference on, 2015: IEEE, pp. 130-134.

[5] F. Belli, "Dependability and Software Reuse--
Coupling Them by an Industrial Standard," in Software
Security and Reliability-Companion (SERE-C), 2013
IEEE 7th International Conference on, 2013: IEEE, pp.
145-154.

[6] R. Keswani, S. Joshi, and A. Jatain, "Software reuse in
practice," in Advanced Computing & Communication
Technologies (ACCT), 2014 Fourth International
Conference on, 2014: IEEE, pp. 159-162.

[7] H. Kaindl, "Software Reuse Based on Business
Processes and Requirements," in Software Engineering
Conference (APSEC), 2013 20th Asia-Pacific, 2013,
vol. 2: IEEE, pp. 85-86.

[8] S. Mahmood, M. Ahmed, and M. Alshayeb, "Reuse
environments for software artifacts: Analysis
framework," in Computer and Information Science
(ICIS), 2013 IEEE/ACIS 12th International Conference
on, 2013: IEEE, pp. 35-40.

[9] M. Kalotra and K. Kaur, "Performance analysis of
reusable software systems," in Confluence The Next
Generation Information Technology Summit
(Confluence), 2014 5th International Conference-,
2014: IEEE, pp. 773-778.

[10] T. Mikkonen, A. Salminen, and A. Taivalsaari,
"Enabling Global, Dynamic Web-Based Software
Reuse--Mashware Revisited," in Software Engineering
and Advanced Applications (SEAA), 2014 40th
EUROMICRO Conference on, 2014: IEEE, pp. 475-
478.

[11] X. Wang, H. Ruan, Y. Wang, H. Li, and H. Yang, "A
Software-Reuse Method from Model1 to SSH2," in
Computer Software and Applications Conference
Workshops (COMPSACW), 2013 IEEE 37th Annual,
2013: IEEE, pp. 469-474.

[12] M. Schots, "On the use of visualization for supporting
software reuse," in Companion Proceedings of the 36th
International Conference on Software Engineering,
2014: ACM, pp. 694-697.

[13] J. Vilela, B. Figueiredo, J. Castro, M. Soares, and E.
Goncalves, "Usability and Software Architecture: A
Literature Review," in Components, Architectures and
Reuse Software (SBCARS), 2015 IX Brazilian
Symposium on, 2015: IEEE, pp. 80-89.

[14] R. R. Vasconcelos, M. Schots, and C. Werner,
"Recommendations for Context-Aware Visualizations
in Software Development," in 10th Workshop on
Modern Software Maintenance, 2013, pp. 41-48.

[15] M. S. de Oliveira, "PREViA: Uma Abordagem para a
Visualização da Evolução de Modelos de Software,"
Universidade Federal do Rio de Janeiro, 2011.

[16] G. Balogh and A. Beszedes, "CodeMetropolis-code
visualisation in MineCraft," in Source Code Analysis
and Manipulation (SCAM), 2013 IEEE 13th
International Working Conference on, 2013: IEEE, pp.
136-141.

[17] R. E. Lopez-Herrejon and A. Egyed, "Towards
interactive visualization support for pairwise testing
software product lines," in Software Visualization
(VISSOFT), 2013 First IEEE Working Conference on,
2013: IEEE, pp. 1-4.

[18] T. Khan, H. Barthel, A. Ebert, and P. Liggesmeyer,
"Visual analytics of software structure and metrics," in
Software Visualization (VISSOFT), 2015 IEEE 3rd
Working Conference on, 2015: IEEE, pp. 16-25.

[19] S. Scarle and N. Walkinshaw, "Visualising software as
a particle system," in Software Visualization
(VISSOFT), 2015 IEEE 3rd Working Conference on,
2015: IEEE, pp. 66-75.

[20] M. Jovanović, D. Starčević, and Z. Jovanović,
"Reusable Design of Data Visualization Software
Architecture for Unmanned Aerial Vehicles," Journal
of Aerospace Information Systems, vol. 11, no. 6, pp.
359-371, 2014.

[21] A. B. Al-Badareen, M. H. Selamat, M. A. Jabar, J. Din,
and S. Turaev, "Reusable software components
framework," in European Conference of Computer
Science (ECCS'10), 2010, pp. 126-130.

Anas holds a PhD in Software Engineering (2013) from
University Putra Malaysia, MSc in Information Technology (2008)
from University Utara Malaysia and BSc in Software Engineering
(2006) from Philadelphia University, Jordan. He is an Assistant
Professor at the Faculty of Information Technology, director of
admission and registration department at Aqaba University of
Technology, Jordan. He has 10 years of industry experience in
software engineering and software development as well as 8 years
of research and teaching in universities. His research interests
include internet of things, software quality, project management,
formal methods, software maintenance and software reuse.

