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Abstract High strength, lightweight lattice structures are gaining increasing attention in aerospace,
automotive, and other fields. Fused deposition modeling (FDM) is a widely used additive manufacturing
technique that has significant advantages in the fabrication of lattice structures. However, deposition
of inter layers phenomenon affects the mechanical properties of the FDM formed lattice structure, and
it is difficult to establish the relationship between the parameters of the lattice structure and the
mechanical properties. In this paper, FDM technology was used to prepare 23 groups of mortise and
tenon lattice structures (MTLS) with different angles ¢, height A and thickness ¢ and quasi-static
compression tests were carried out on them. Artificial neural network (ANN) was used to establish a
prediction model of specific energy absorption (SEA) of lattice structures, and the accuracy of the
prediction model was verified by experiments. The results show that the SEA of MTLS decreases with
increasing ¢. With the increase of ¢ and the decrease of A, SEA first increases and then decreases. The
SEA values predicted by the ANN with "3-7-1" structure are in good agreement with the experimental
values. The ANN tool are validated and can be a favourable tool for lattice energy prediction with
available data.
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1. Introduction

Lattice structures offer advantages such as
lightweight, high energy absorption, and high
strength, making them widely used in aerospace,
automotive, biomedical, and other fields[1,2,3].
Traditional preparation methods for lattice
structures include investment casting, extrusion,
stamping, and tensile mesh folding[4,5,6]. While
these traditional processes achieve excellent
performance through high-precision machining
and a wide range of material options, they are
hampered by complexity, high costs, long
production cycles, and limited design flexibility,
which constrain the further application of lattice
structures[7].

Additive manufacturing (AM) technology provides
significant design flexibility and the capability to
produce complex structures[8]. Among the various
additive manufacturing methods, Fused Deposition
Modeling (FDM) stands out as a prevalent additive
manufacturing technique, renowned for its
cost-effectiveness and enhanced geometric flexibility,
particularly when employed to fabricate lattice
structures[9]. Deposition of inter layers phenomenon
refers to the rapid heating and cooling process
due to which the heated molten material deposited
on the previously deposited cooled layer, causes
in weak bonding between the deposited layers[10].
Due to weak inter layers adhesion and porous
structure, the mechanical properties of FDM
formed lattice structures are anisotropic[11,12]. A
multitude of researchers have delved into the
mechanical properties of FDM formed lattice
structures, focusing on the interplay between lattice
structure parameters and material behavior
[13,14]. It has been consistently observed that the
relationship between these parameters and the
mechanical properties is characterized by multifactorial
and nonlinear dynamics. This complexity has
rendered the establishment of a direct mathematical
model linking structural design variables to

mechanical performance exceedingly challenging[15].

Experimental and finite element analysis methods
often demand extensive computational resources
and experimental datal16,17].

An ANN is a computational model inspired by
the structure and function of the human brain's
neural networks. ANNs are designed to simulate
complex nonlinear relationships and predict
output values based on training datall8]. By
using data samples rather than entire datasets,
artificial neural networks are able to make quick
predictions, which saves both time and money.

Doodi et al.[19] used ANN and Levenberg-Marquardt
algorithms to predict the energy absorption of
their designed bionic lattice structures with
parameters such as overlapping area, wall
thickness and size of the unit cell. Hosseini et
al.[20] used Levenberg-Marquardt et al algorithms
to train ANN to predict the absorbed energy,
dissipated energy and peak force value of
sinusoidal shape memory unit made of PLA.
Alwattar et al.[21] calculated the performance of
BCC lattice structure through finite element
analysis approach and theoretical calculations,
the results are then used to develop an ANN
model, in which the input data were the lattice
strut diameters and the cell size, and the output
data were the mechanical properties data of
lattice structure. Vyavahare et al.[22] developed a
machine learning model using neural networks to
predict strength, stiffness, and specific energy
absorption under flexural loading due to different

lattice structural parameters (angle, width, and

length of arm). Singh et al.[23] considering
process parameters such as different raster
patterns, built an artificial neural network

prediction model to predict the response of
tensile strength, material consumption, build
time, and surface quality.

In this research, a novel mortise and tenon
lattice structure (MTLS) is designed, which is
inspired by traditional mortise-tenon structures
used in architecture. ANN is used to develop a

prediction model for the specific energy absorption
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(SEA) of the MTLS, allowing for the forecasting of
the energy absorption characteristics of the FDM
-printed lattice structures. It provides an idea for
rapid design and manufacture of lightweight and
high energy absorbing new lattice structures.
The rest of the paper is organized as follows:
Section 2 details the design method of lattice
structure, structure parameters, printing parameters,
test parameters and ANN methods. Section 3
describes the parameter setting, prediction results
and test results of ANN, and the experimental
results are discussed. The conclusion is presented

in Section 4.

2. Methods and Experiment

2.1 Methodology for design and fabrication
of MTLS

In traditional construction, the mortise and
tenon structure serves as the primary structural
support and comprises components such as
columns, beams, purlins, and other related
elements. The tenon refers to the projecting part
of the joint, while the mortise and tenon together
represent the connection between two or more
parts, with the tenon pin being the structural
component inserted into the mortise hole.

Based on the characteristics of mortise and
tenon structures and lattice structures, a typical
hexagonal joint tenon is selected as the design
object. The tenon is formed by three square
materials inclined at a 60° angle to each other,
with each square material's joint retaining 1/3 of
its thickness, as shown in Fig. 1a). The designed
MTLS members are illustrated in Fig. 1b). To
MTLS during

compression, upper and lower sandwich plates

ensure the stability of the

are incorporated into the design. The assembly

process of the MTLS is shown in Fig. 1c).

a) Hexagonal intersection mortise

" Sandwich
board

c) Installation process of MTLS

[Fig. 1] Design idea and structure of lattice structure

The MTLS was fabricated using a UP 300 FDM
printer manufactured by Beijing Taiertimes. The
mortise and tenon structure is printed separately
from the sandwich plate, as shown in Fig. 2. For
eSUN ABS+
produced by Shenzhen Guanghua

this process, 1.75mm diameter
filament,
Weiye, was selected. The printing parameters
include a nozzle temperature of 270C, a platform
temperature of 90T, a layer thickness of
0.25mm, and a 100% infill rate, with all other

settings using the printer's default parameters.
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[Fig. 2] Installation process of MTLS

2.2 Lattice Structure Performance Test

The mass of the rod and sandwich plate of the
MTLS was measured using a precision electronic
balance with an accuracy of 0.0001 g Compression
experiments on the prepared lattice structures
were conducted using a WDW-50 universal
testing machine, with the force-displacement
response of each sample recorded at a loading
rate of 1 mm/min.

The specific absorbed energy (SEA) denotes
the energy absorbed per unit mass for a specific
structure. The specific expressions are provided

below:

/ Fdé

SEA=—— 1.1

Where F is the magnitude of the compression
force, & is the final compression displacement,
and m is the mass of the structure.

The Central Composite Design (CCD) method
was used to design 23 groups of MTLS to reduce
the number of experiments. MTLS compression
parts are printed considering the experimental
design mentioned in (Table 1). by varying the
MTLS structural parameters combinations, and
the SEA values are calculated according to the
formula and listed in <Table 1).

(Table 1) Experimental run and responses evaluated

ar° #/mm Almm SEA/J kg™
45 20 6 121.5166243
45 20 6 84.41400936

45 20 179.0595374
45 18 388.0309295
30 20 652.4079251
52.5 19 6.5 102.5699385
52.5 21 6.5 28.13124716
52.5 21 55 41.51734073
52.5 19 5.5 78.97687265
37.5 21 5.5 456.5170311
45 20 117.7743427
45 22 103.0100217
45 20 89.31266269
375 21 6.5 117.4193451
37.5 19 5.5 219.4160079
45 20 6 124.3306705
45 20 6 150.4812834
45 20 5 93.48500337
60 20 6 98.90377397
45 2 6 185.167787
37.5 19 6.5 142.5282631
45 20 7 94.03355364
45 20 6 134.9731326

2.3 Atrtificial Neural Network Model

In predicting the mechanical properties of
MTLSs, the implementation of an ANN model
involves selecting the number of neurons in the
input, hidden, and output layers. The input layer
consists of 3 neurons, representing the angle & of
the mortise and tenon lattice member, the height
h from the center of the member to the plate,
and the thickness t of the member. The output

layer contains a single neuron, which represents

the SEA. The structure of artificial neural
network is shown in Fig. 3.
| Inputlayer Hidden layer  Outputlayer
@
[ O ““Leo
e
Height () @« @—————@ SEA
@
(hickness 0 @~ @
@

[Fig. 3] The structure of artificial neural network
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3. Results and Discussion

3.1 Sample Pretreatment

Although there is no exact method to calculate
the optimal number of neurons in the hidden
layer, the following formula can be used as a rule

of thumb during the design process:

h=+vm+n+a 1.2
Where £ is the number of neurons in the hidden
layer, m is the number of neurons in the input
layer, n is the number of neurons in the output
layer, and a is a constant between 1 and 10. To
achieve the best fit performance, a can be
adjusted to minimize the prediction error. In this
paper, the number of hidden layer neurons is
determined using the trial and error method,
resulting in an optimal artificial neural network
structure of 3-7-1.

To ensure convergence, the sample data is

normalized using the following formula:

z; —min(z;)

Yi = (1.3)

max(z;)— min(z;)

Where x; and y; represent the original and
normalized data of the /-th input, respectively.
max(x) and min(x) denote the maximum and
minimum values in the i-th

input sample,

respectively. After normalization, the data is
scaled to fall within the range of 0 to 1.

The
algorithm is employed to train the network. The
data is divided as follows: 70% for training, 15%

for testing, and 15% for validation, that is, the

Levenberg-Marquardt backpropagation

sample size for training data is 17, the sample
size for test data is 3, and the sample size for
verification data is 3. In order to better predict
and improve the accuracy of the model, the
subsequent validation test values are not used as
the training test set.

3.2 Model Prediction Results

The regression performance of the artificial
neural network model is illustrated in Fig. 4,
which shows a strong correlation between the

experimental data and the predicted values.

Training: R=0.9995 Validation: R=0.98699
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[Fig. 4] The regression performance of the artificial
neural network model

To verify the data training transparently,
predicted and actual values are randomly selected
from the experimental data and compared in a
chart, as shown in Fig. 5. The comparison reveals
that the error between the actual and predicted
values is negligible within the available dataset of

input and output values.

—=— Actual
—e— Predicted

Sample

[Fig. 5] Comparison of the actual values with the
ANN predicted values

3.3 Experimental Verification

For the trained algorithm, 9 groups of MTLSs
with different parameters are designed to predict

the SEA value, and the specific parameters are
shown in (Table 2).
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{Table 2) Structural parameters of MTLS for

verification

No. é/° t/mm AH/mm
1 30 5 17.5
2 45 5 175
3 60 5 175
4 30 6 17
5 45 6 17
6 60 6 17
7 30 7 16.5
8 45 7 16.5
9 60 7 16.5

Three-dimensional modeling of the MTLS, with
parameters as shown in (Table 2), was performed.
The structure was printed and assembled using
an FDM printer and subsequently tested under
quasi-static compression load. The resulting
stress-strain curve of the MTLS is illustrated in

Fig. 6.

25 L —— Samplel
——— Sample2
——— Sample3
——— Sample4

Sample5
—— Sample6

Sample7
——— Sampled
—— Sample9
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=)
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[Fig. 6] Stress-strain curves of MTLSs

Fig. 6 illustrates that the forming method
significantly affects the fracture properties of the
lattice. The compression process of the MTLS can
be described as follows:

First Stage: The stress-strain curve increases
linearly. As & decreases, stress rises rapidly. Stress
also increases as r and h decrease.

Second Stage: Elastic deformation occurs, and
the stress begins to gradually decrease.

Third Stage: Due to the fitting of the mortise
and tenon matrix structure into the hole on the
sandwich plate, the specimen starts to break and
distort at multiple points, leading to a gradual

decline in stress.
The samples with MTLS compressed is shown
in Fig. 7.

a) Sample 1 c) Sample 3

f) Sample 6

d) Sample 4 e) Sample 5

Crack

i) Sample 9

g) Sample 7 h) Sample 8

[Fig. 71 The samples with MTLS compressed

As can be seen from Fig. 7a)-f), when t is 5
mm and h is 17.5 mm, or when ris 6 mm and A
is 17 mm, the rods of the MTLS experience
twisting, bending deformation, and extrusion,
leading to the formation of cracks. Conversely,
when rand A are 7 mm and 16 mm, respectively,
the rods undergo elastic deformation, and the
upper sandwich plate fails due to shear forces,
this conclusion can be verified in Fig. 7g)-i).

The SEA values of 9 groups of samples were
calculated using formula (1), as shown in Fig. 8.

3000
B =5.=175
I =6,/=17

230 ) =74=16.5

45
ef°

[Fig. 8] SEA experimental values of 9 test samples

As @ increases, the SEA of the MTLS decreases
gradually. With increasing ¢ and decreasing A, the
SEA initially increases and then decreases. The
SEA value is highest at 2954.4 J/kg when & is 30°,
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tis 6 mm, and A is 17 mm. Conversely, the SEA
value is lowest at 285.28 J/kg when ¢ is 60°, ¢ is
7 mm, and A is 16.5 mm.

The SEA values of 9 groups of samples were
compared with the predicted values, as shown in

Fig. 9.
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[Fig. 9] Comparison of experimental and predicted
values

It can be seen from Fig. 9 that the predicted

results of the ANN model for 9 samples are in

close agreement to the actual experimental

values. From the comparative results, it can be
concluded that well-trained neural network
model is capable of predicting output responses

of MTLSs, and the SEA values were predicted
using the ANN model. Comparison of the actual
values with the predicted values shows a high
level of consistency. As the angle 6 increases, the
SEA of the MTLSs decreases gradually.
Additionally, with increasing t and decreasing h,
the SEA initially increases and then decreases.
The SEA reaches its maximum value at 2954.4
J/kg when # is 30°, ¢is 6 mm, and A is 17 mm.
Although the prediction results from the model
are promising, further investigation is needed to
determine the optimal number of hidden layers.
This will enhance the performance of the ANN

model and reduce computational time.
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