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Abstract  High strength, lightweight lattice structures are gaining increasing attention in aerospace, 
automotive, and other fields. Fused deposition modeling (FDM) is a widely used additive manufacturing
technique that has significant advantages in the fabrication of lattice structures. However, deposition
of inter layers phenomenon affects the mechanical properties of the FDM formed lattice structure, and
it is difficult to establish the relationship between the parameters of the lattice structure and the 
mechanical properties. In this paper, FDM technology was used to prepare 23 groups of mortise and
tenon lattice structures (MTLS) with different angles θ, height h and thickness t, and quasi-static 
compression tests were carried out on them. Artificial neural network (ANN) was used to establish a 
prediction model of specific energy absorption (SEA) of lattice structures, and the accuracy of the 
prediction model was verified by experiments. The results show that the SEA of MTLS decreases with
increasing θ. With the increase of t and the decrease of h, SEA first increases and then decreases. The 
SEA values predicted by the ANN with "3-7-1" structure are in good agreement with the experimental 
values. The ANN tool are validated and can be a favourable tool for lattice energy prediction with 
available data.

Key Words : Fused deposition modeling, Artificial neural network, Mortise and tenon, Lattice structure,
Mechanical properties

요  약  고강도 경량 격자 구조는 항공우주, 자동차 등 여러 분야에서 점점 더 주목받고 있다. 융합 적층 성형(FDM)은
격자 구조 제작에서 중요한 장점을 지닌 널리 사용되는 적층 제조 기술이다. 그러나 층간 적층 현상은 FDM으로 형성된
격자 구조의 기계적 특성에 영향을 미치며, 격자 구조의 매개변수와 기계적 특성 간의 관계를 확립하는 것이 어렵다.
본 논문에서는 FDM 기술을 사용하여 각기 다른 각도 θ, 높이 h, 두께 t를 가진 23개의 짜임 및 장부 격자 구조(MTLS)
를 준비하고, 준정적 압축 시험을 수행했다. 인공 신경망(ANN)을 사용하여 격자 구조의 비에너지 흡수(SEA)를 예측하
는 모델을 구축하였고, 실험을 통해 예측 모델의 정확성을 검증했다. 결과에 따르면, MTLS의 SEA는 θ가 증가함에 따
라 감소하며, t가 증가하고 h가 감소할 때 SEA는 처음에 증가하다가 다시 감소하는 경향을 보였다. 3-7-1 구조의 ANN
으로 예측된 SEA 값은 실험 값과 잘 일치하였고, ANN 도구는 기존 데이터를 기반으로 한 격자 구조 에너지 예측에
유리한 도구로 검증되었다.

주제어 : 융합 증착 모델링, 인공 신경망, 맞춤 및 장부, 격자 구조, 기계적 특성
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1. Introduction

Lattice structures offer advantages such as 
lightweight, high energy absorption, and high 
strength, making them widely used in aerospace, 
automotive, biomedical, and other fields[1,2,3]. 
Traditional preparation methods for lattice 
structures include investment casting, extrusion, 
stamping, and tensile mesh folding[4,5,6]. While 
these traditional processes achieve excellent 
performance through high-precision machining 
and a wide range of material options, they are 
hampered by complexity, high costs, long 
production cycles, and limited design flexibility, 
which constrain the further application of lattice 
structures[7]. 

Additive manufacturing (AM) technology provides 
significant design flexibility and the capability to 
produce complex structures[8]. Among the various 
additive manufacturing methods, Fused Deposition 
Modeling (FDM) stands out as a prevalent additive 
manufacturing technique, renowned for its 
cost-effectiveness and enhanced geometric flexibility, 
particularly when employed to fabricate lattice 
structures[9]. Deposition of inter layers phenomenon 
refers to the rapid heating and cooling process 
due to which the heated molten material deposited 
on the previously deposited cooled layer, causes 
in weak bonding between the deposited layers[10]. 
Due to weak inter layers adhesion and porous 
structure, the mechanical properties of FDM 
formed lattice structures are anisotropic[11,12]. A 
multitude of researchers have delved into the 
mechanical properties of FDM formed lattice 
structures, focusing on the interplay between lattice 
structure parameters and material behavior 
[13,14]. It has been consistently observed that the 
relationship between these parameters and the 
mechanical properties is characterized by multifactorial 
and nonlinear dynamics. This complexity has 
rendered the establishment of a direct mathematical 
model linking structural design variables to 
mechanical performance exceedingly challenging[15]. 

Experimental and finite element analysis methods 
often demand extensive computational resources 
and experimental data[16,17].

An ANN is a computational model inspired by 
the structure and function of the human brain's 
neural networks. ANNs are designed to simulate 
complex nonlinear relationships and predict 
output values based on training data[18]. By 
using data samples rather than entire datasets, 
artificial neural networks are able to make quick 
predictions, which saves both time and money. 

Doodi et al.[19] used ANN and Levenberg-Marquardt 
algorithms to predict the energy absorption of 
their designed bionic lattice structures with 
parameters such as overlapping area, wall 
thickness and size of the unit cell. Hosseini et 
al.[20] used Levenberg-Marquardt et al algorithms 
to train ANN to predict the absorbed energy, 
dissipated energy and peak force value of 
sinusoidal shape memory unit made of PLA. 
Alwattar et al.[21] calculated the performance of 
BCC lattice structure through finite element 
analysis approach and theoretical calculations, 
the results are then used to develop an ANN 
model, in which the input data were the lattice 
strut diameters and the cell size, and the output 
data were the mechanical properties data of 
lattice structure. Vyavahare et al.[22] developed a 
machine learning model using neural networks to 
predict strength, stiffness, and specific energy 
absorption under flexural loading due to different 
lattice structural parameters (angle, width, and 
length of arm). Singh et al.[23] considering 
process parameters such as different raster 
patterns, built an artificial neural network 
prediction model to predict the response of 
tensile strength, material consumption, build 
time, and surface quality.

In this research, a novel mortise and tenon 
lattice structure (MTLS) is designed, which is 
inspired by traditional mortise-tenon structures 
used in architecture. ANN is used to develop a 
prediction model for the specific energy absorption 
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(SEA) of the MTLS, allowing for the forecasting of 
the energy absorption characteristics of the FDM 
-printed lattice structures. It provides an idea for 
rapid design and manufacture of lightweight and 
high energy absorbing new lattice structures.

The rest of the paper is organized as follows: 
Section 2 details the design method of lattice 
structure, structure parameters, printing parameters, 
test parameters and ANN methods. Section 3 
describes the parameter setting, prediction results 
and test results of ANN, and the experimental 
results are discussed. The conclusion is presented 
in Section 4.

2. Methods and Experiment

2.1 Methodology for design and fabrication 
    of MTLS

In traditional construction, the mortise and 
tenon structure serves as the primary structural 
support and comprises components such as 
columns, beams, purlins, and other related 
elements. The tenon refers to the projecting part 
of the joint, while the mortise and tenon together 
represent the connection between two or more 
parts, with the tenon pin being the structural 
component inserted into the mortise hole.

Based on the characteristics of mortise and 
tenon structures and lattice structures, a typical 
hexagonal joint tenon is selected as the design 
object. The tenon is formed by three square 
materials inclined at a 60° angle to each other, 
with each square material's joint retaining 1/3 of 
its thickness, as shown in Fig. 1a). The designed 
MTLS members are illustrated in Fig. 1b). To 
ensure the stability of the MTLS during 
compression, upper and lower sandwich plates 
are incorporated into the design. The assembly 
process of the MTLS is shown in Fig. 1c).

a) Hexagonal intersection mortise

b) MTLS

c) Installation process of MTLS

[Fig. 1] Design idea and structure of lattice structure

The MTLS was fabricated using a UP 300 FDM 
printer manufactured by Beijing Taiertimes. The 
mortise and tenon structure is printed separately 
from the sandwich plate, as shown in Fig. 2. For 
this process, 1.75mm diameter eSUN ABS+ 
filament, produced by Shenzhen Guanghua 
Weiye, was selected. The printing parameters 
include a nozzle temperature of 270℃, a platform 
temperature of 90℃, a layer thickness of 
0.25mm, and a 100% infill rate, with all other 
settings using the printer's default parameters.
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θ/° t/mm h/mm SEA/J·kg-1

45 20 6 121.5166243

45 20 6 84.41400936

<Table 1> Experimental run and responses evaluated

45 20 6 179.0595374

45 18 6 388.0309295

30 20 6 652.4079251

52.5 19 6.5 102.5699385

52.5 21 6.5 28.13124716

52.5 21 5.5 41.51734073

52.5 19 5.5 78.97687265

37.5 21 5.5 456.5170311

45 20 6 117.7743427

45 22 6 103.0100217

45 20 6 89.31266269

37.5 21 6.5 117.4193451

37.5 19 5.5 219.4160079

45 20 6 124.3306705

45 20 6 150.4812834

45 20 5 93.48500337

60 20 6 98.90377397

45 2 6 185.167787

37.5 19 6.5 142.5282631

45 20 7 94.03355364

45 20 6 134.9731326

[Fig. 2] Installation process of MTLS

2.2 Lattice Structure Performance Test
The mass of the rod and sandwich plate of the 

MTLS was measured using a precision electronic 
balance with an accuracy of 0.0001 g. Compression 
experiments on the prepared lattice structures 
were conducted using a WDW-50 universal 
testing machine, with the force-displacement 
response of each sample recorded at a loading 
rate of 1 mm/min.

The specific absorbed energy (SEA) denotes 
the energy absorbed per unit mass for a specific 
structure. The specific expressions are provided 
below:

 








            (1.1)

Where F is the magnitude of the compression 
force, δ is the final compression displacement, 
and m is the mass of the structure.

The Central Composite Design (CCD) method 
was used to design 23 groups of MTLS to reduce 
the number of experiments. MTLS compression 
parts are printed considering the experimental 
design mentioned in <Table 1>. by varying the 
MTLS structural parameters combinations, and 
the SEA values are calculated according to the 
formula and listed in <Table 1>.

2.3 Artificial Neural Network Model
In predicting the mechanical properties of 

MTLSs, the implementation of an ANN model 
involves selecting the number of neurons in the 
input, hidden, and output layers. The input layer 
consists of 3 neurons, representing the angle θ of 
the mortise and tenon lattice member, the height 
h from the center of the member to the plate, 
and the thickness t of the member. The output 
layer contains a single neuron, which represents 
the SEA. The structure of artificial neural 
network is shown in Fig. 3.

[Fig. 3] The structure of artificial neural network
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3. Results and Discussion

3.1 Sample Pretreatment
Although there is no exact method to calculate 

the optimal number of neurons in the hidden 
layer, the following formula can be used as a rule 
of thumb during the design process:

                 (1.2) 

Where h is the number of neurons in the hidden 
layer, m is the number of neurons in the input 
layer, n is the number of neurons in the output 
layer, and a is a constant between 1 and 10. To 
achieve the best fit performance, a can be 
adjusted to minimize the prediction error. In this 
paper, the number of hidden layer neurons is 
determined using the trial and error method, 
resulting in an optimal artificial neural network 
structure of 3-7-1.

To ensure convergence, the sample data is 
normalized using the following formula:

 max min

  min          (1.3) 

Where xi and yi represent the original and 
normalized data of the i-th input, respectively. 
max(xi) and min(xi) denote the maximum and 
minimum values in the i-th input sample, 
respectively. After normalization, the data is 
scaled to fall within the range of 0 to 1.

The Levenberg-Marquardt backpropagation 
algorithm is employed to train the network. The 
data is divided as follows: 70% for training, 15% 
for testing, and 15% for validation, that is, the 
sample size for training data is 17, the sample 
size for test data is 3, and the sample size for 
verification data is 3. In order to better predict 
and improve the accuracy of the model, the 
subsequent validation test values are not used as 
the training test set.

3.2 Model Prediction Results
The regression performance of the artificial 

neural network model is illustrated in Fig. 4, 
which shows a strong correlation between the 
experimental data and the predicted values.

[Fig. 4] The regression performance of the artificial 
neural network model

To verify the data training transparently, 
predicted and actual values are randomly selected 
from the experimental data and compared in a 
chart, as shown in Fig. 5. The comparison reveals 
that the error between the actual and predicted 
values is negligible within the available dataset of 
input and output values.

[Fig. 5] Comparison of the actual values with the 
ANN predicted values

3.3 Experimental Verification
For the trained algorithm, 9 groups of MTLSs 

with different parameters are designed to predict 
the SEA value, and the specific parameters are 
shown in <Table 2>.
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No. θ/° t/mm h/mm

1 30 5 17.5

2 45 5 17.5

3 60 5 17.5

4 30 6 17

5 45 6 17

6 60 6 17

7 30 7 16.5

8 45 7 16.5

9 60 7 16.5

<Table 2> Structural parameters of MTLS for 
verification

Three-dimensional modeling of the MTLS, with 
parameters as shown in <Table 2>, was performed. 
The structure was printed and assembled using 
an FDM printer and subsequently tested under 
quasi-static compression load. The resulting 
stress-strain curve of the MTLS is illustrated in 
Fig. 6.

[Fig. 6] Stress-strain curves of MTLSs

Fig. 6 illustrates that the forming method 
significantly affects the fracture properties of the 
lattice. The compression process of the MTLS can 
be described as follows:

First Stage: The stress-strain curve increases 
linearly. As θ decreases, stress rises rapidly. Stress 
also increases as t and ℎ decrease.

Second Stage: Elastic deformation occurs, and 
the stress begins to gradually decrease.

Third Stage: Due to the fitting of the mortise 
and tenon matrix structure into the hole on the 
sandwich plate, the specimen starts to break and 
distort at multiple points, leading to a gradual 

decline in stress.
The samples with MTLS compressed is shown 

in Fig. 7.

 

      a) Sample 1          b) Sample 2          c) Sample 3

       d) Sample 4        e) Sample 5           f) Sample 6

  

       g) Sample 7         h) Sample 8         i) Sample 9

[Fig. 7] The samples with MTLS compressed

As can be seen from Fig. 7a)-f), when t is 5 
mm and h is 17.5 mm, or when t is 6 mm and h 
is 17 mm, the rods of the MTLS experience 
twisting, bending deformation, and extrusion, 
leading to the formation of cracks. Conversely, 
when t and h are 7 mm and 16 mm, respectively, 
the rods undergo elastic deformation, and the 
upper sandwich plate fails due to shear forces, 
this conclusion can be verified in Fig. 7g)-i).

The SEA values of 9 groups of samples were 
calculated using formula (1), as shown in Fig. 8.

[Fig. 8] SEA experimental values of 9 test samples

As θ increases, the SEA of the MTLS decreases 
gradually. With increasing t and decreasing h, the 
SEA initially increases and then decreases. The 
SEA value is highest at 2954.4 J/kg when θ is 30°, 
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t is 6 mm, and h is 17 mm. Conversely, the SEA 
value is lowest at 285.28 J/kg when θ is 60°, t is 
7 mm, and h is 16.5 mm.

The SEA values of 9 groups of samples were 
compared with the predicted values, as shown in 
Fig. 9.

[Fig. 9] Comparison of experimental and predicted 
values

It can be seen from Fig. 9 that the predicted 
results of the ANN model for 9 samples are in 
close agreement to the actual experimental 
values. From the comparative results, it can be 
concluded that well-trained neural network 
model is capable of predicting output responses 
of MTLS with higher level of accuracy.

4. Conclusion

In this paper, a lattice structure inspired by 
traditional mortise and tenon techniques is 
designed using 3D modeling software. The 
samples were fabricated using FDM technology 
and subjected to quasi-static compression tests. 
The SEA of each sample was calculated based on 
the test results. The mechanical properties of 
MTLS were predicted by ANN.

70% of the available data is used for training, 
15% for testing, and 15% for validation. After 
multiple training iterations, the predicted values 
are compared with the actual data to enhance 
the accuracy of the training algorithm.

A compression test was conducted on 9 groups 

of MTLSs, and the SEA values were predicted 
using the ANN model. Comparison of the actual 
values with the predicted values shows a high 
level of consistency. As the angle θ increases, the 
SEA of the MTLSs decreases gradually. 
Additionally, with increasing t and decreasing ℎ, 
the SEA initially increases and then decreases. 
The SEA reaches its maximum value at 2954.4 
J/kg when θ is 30°, t is 6 mm, and h is 17 mm.

Although the prediction results from the model 
are promising, further investigation is needed to 
determine the optimal number of hidden layers. 
This will enhance the performance of the ANN 
model and reduce computational time.
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