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Abstract  In the context of multi-vehicle and multi-task logistics distribution within a park, traditional
algorithms are often hindered by high computational complexity and slow convergence rates. Particle
Swarm Optimization (PSO) has gained popularity in path planning for autonomous delivery vehicles due
to its straightforward algorithmic principles, broad applicability, and comprehensive search capabilities.
However, the conventional PSO is susceptible to premature convergence, leading to local optima. To
address this, this study incorporates the Tent map into the PSO to enhance the algorithm's global 
search ability and prevent premature convergence. Benchmark function tests demonstrate that the 
improved Particle Swarm Optimization algorithm (TPSO), as proposed in this study, exhibits faster 
convergence and greater accuracy.In the instance verification section, X Park was selected as an 
example to construct a multi-vehicle and multi-task model for the logistics distribution within the park.
The TPSO algorithm proposed in this paper was used to solve the model, and finally, the superiority
of the TPSO algorithm was verified through comparative simulation.
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요  약  공원 내 다중 차량 및 다중 작업 물류 분배의 맥락에서 전통적인 알고리즘은 종종 높은 계산 복잡성과 느린
수렴 속도에 의해 제한된다. 입자 군집 최적화(PSO)는 그 간단한 알고리즘 원칙, 광범위한 적용 가능성, 그리고 포괄적
인 검색 능력으로 인해 자율 배달 차량의 경로 계획에서 인기를 얻고 있다. 그러나 기존의 PSO는 조기 수렴에 취약하여 
지역 최적해에 도달할 수 있다. 이를 해결하기 위해 본 연구는 PSO에 텐트 맵 혼돈(Tent map)을 도입하여 알고리즘의
전역 검색 능력을 향상시키고 조기 수렴을 방지하고자 하였다. 벤치마크 함수 테스트 결과, 이 글에서 제안한 개선된
입자 군집 최적화 알고리즘(TPSO)은 더 빠른 수렴과 높은 정확성을 보였다. 사례 검증 섹션에서는 X 공원을 예로 들어
공원 내 물류 분배를 위한 다중 차량 및 다중 작업 모델을 구축하였으며, 이 글에서 제안한 TPSO 알고리즘을 사용하여
모델을 해결하였고, 최종적으로 TPSO 알고리즘의 우수성을 비교 시뮬레이션을 통해 검증하였다.

주제어 : VRP, PSO, 텐트 맵 혼돈, 시간 창 제약, 자율 배달 차량



사물인터넷융복합논문지 제10권 제5호, 202428

1. Introduction

With the ongoing development of society and 
the progress of technology, autonomous delivery 
vehicles, as a novel type of intelligent delivery 
tool, are increasingly capturing public attention. 
The parks, being specific areas, encounter numerous 
challenges and issues with their internal logistics 
distribution systems. The question of how to 
utilize multiple autonomous delivery vehicles for 
route planning and to collaboratively fulfill the 
logistics distribution tasks within the park, thereby 
enhancing delivery efficiency, has become one of 
the key focal points of current research.

The study of route planning for autonomous 
delivery vehicles is a complex and challenging 
topic. Unlike general route planning algorithms, 
the route planning algorithm for unmanned 
delivery vehicles in a park must consider not 
only the feasibility of obtaining a path from the 
starting point to the destination but also a 
comprehensive set of factors, including cost, 
safety, customer requirements for time nodes, 
and the payload capacity of the delivery vehicles
[1-7] Reference [8] introduces a route planning 
method utilizing the Particle Swarm Optimization 
(PSO) algorithm, capable of generating an 
optimal logistics distribution plan by integrating 
considerations of transportation routes, plans, 
traffic congestion, transfer times, and waiting 
times. Addressing the "premature convergence" 
issue identified in Reference [9], an enhanced 
PSO algorithm has been developed for UAV route 
planning. This enhancement optimizes adaptive 
parameters and introduces global extreme value 
mutation and acceleration terms to balance 
global and local search efficiencies, thereby 
preventing premature convergence. Reference 
[10] develops a three-tier logistics model with 
multiple constraints for vehicle routing 
optimization, employing a Differential Evolution 
(DE) algorithm with refined mutation strategies 
to tackle logistics distribution problems with 

multiple objectives. Reference [11] presents a 
particle swarm algorithm with a priority strategy 
tailored to order delivery characteristics, 
designed to address the open vehicle routing 
problem with time windows and multiple vehicle 
types. Reference [12] applies a PSO algorithm 
integrated with Tent Map Chaos to optimize 
RFID network deployment. Reference [13]
proposes an integer particle update method 
based on particle exchange principles to solve 
multi-task vehicle routing problems with time 
window constraints. Reference [14] introduces a 
reverse optimization technique that leverages 
historical route decisions of experts to formulate 
a cost matrix encapsulating expert knowledge, 
which is then utilized in the resolution of route 
planning models.

In conclusion, to tackle the challenges of uneven 
initial population distribution and premature 
convergence commonly faced by the Particle 
Swarm Optimization (PSO) algorithm in route 
planning, this study introduces an enhanced 
Tent-Enhanced Particle Swarm Optimization 
(TPSO) algorithm tailored for multi-vehicle and 
multi-task routing in parks. Simulations 
conducted in Matlab 2023a have confirmed that 
the proposed TPSO algorithm is both efficient 
and practical for multi-vehicle and multi-task 
route planning within park delivery systems.

2. Problem Description and Model 
Construction

2.1 Problem Description
The problem is specifically described as a 

plurality of autonomous delivery vehicles of the 
same model starting from the same place, 
providing delivery services to distribution points 
at different locations in a certain order 
according to a pre-set time, and returning to the 
starting point after completing the delivery task 
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of each distribution point.
Figure 1 depicts the autonomous delivery vehicles 

and their operational environment within the 
park. Typically, the working environment for 
these vehicles is a relatively enclosed park area. 
The vehicles are equipped with a fixed number 
of storage compartments of varying sizes on both 
sides of the vehicle body, which are utilized for 
storing items intended for delivery.

    

[Fig. 1] Autonomous Delivery Vehicles and Their 
Delivery Environment

To effectively translate the problem into a model, 
this paper makes the following assumptions:

(1) The study focuses on the route optimization 
problem from a single park logistics center 
to multiple locations within the same park.

(2) The demand requirements, time window 
constraints, and geographical locations of 
all delivery points are known and 
predefined.

(3) The demand at each delivery point can be 
serviced by a single autonomous delivery 
vehicle.

(4) The park logistics distribution center has a 
fleet of autonomous delivery vehicles, all of 
which are of the same model and carrying 
capacity.

(5) All delivery vehicles depart from and return 
to the park logistics distribution center 
after completing their delivery tasks, with 
no pick-up tasks involved during the 
middle of the route.

(6) There are accessible paths between all 
delivery points, ensuring that vehicles can 
navigate to each location as required.

2.2 Symbols and decision variables
   ⋯ --represent the set of the 

logistics sorting center and distribution points 
within the park, where the logistics sorting 
center serves  distribution points.

--The maximum load capacity of the 
delivery vehicle;

--The demand at distribution point  

(  ⋯);
--The distance between distribution point   

and distribution point  ; (  ⋯)；
 --The vehicle's travel speed during time 

period  ;
 --The travel time of the vehicle from 

delivery point   to delivery point   during time 
period  ;

--The fixed cost of the -th vehicle. 

(  ⋯);


 --The cost incurred per kilometer by the 

-th vehicle when traveling from delivery point   
to delivery point  ;


--The departure time of the vehicle from the 

park's logistics sorting center;


--The arrival time of vehicle  at delivery 

point ;
-- The time required to complete the 

unloading task at distribution station  ;
--if the task at delivery point   is 

completed by vehicle  then    ,otherwise 

  ；

--If vehicle  travels from delivery point   

to delivery point   then    , otherwise 

   .

--if the -th vehicle at the park's logistics 

sorting center is utilized then    ,otherwise 

   .
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2.3 Objective Function Design
(1) Fixed Costs of Vehicles
The fixed cost of vehicles is typically a 

constant that encompasses the depreciation of 
the vehicle, insurance costs, and other fixed 
expenses associated with the vehicle's operation. 
This cost is only related to the number of 
vehicles actually used in the delivery process. 

Therefore, the fixed cost  can be expressed as:

      
  



         （1.1）

In this context， represents the fixed cost 

generated by the -th vehicle.    indicates whether 

the -th delivery vehicle is used, where   

 signifies that the -th vehicle is utilized.

(2) Transportation Costs of Vehicles
The transportation cost of vehicles primarily 

refers to the fuel consumption cost, which is 
directly proportional to the distance traveled by 
the vehicle. The transportation cost    incurred 
during the delivery process can be expressed as:

    
  




  




    （1.2）

In this context, 
  represents the cost per 

kilometer incurred by the  -th vehicle when 
traveling from delivery point   to delivery point 
 ;  denotes the distance from delivery point   
to delivery point  .   indicates the travel status 
of vehicle , and when    , it signifies that 
the -th vehicle is traveling from delivery point 
  to delivery point  .

(3) Late Penalty Costs
The late penalty cost is an additional cost 

incurred when an autonomous delivery vehicle  

does not arrive at the delivery point   within the 
time specified by the customer. This cost is 
represented by .

(4) Overload Penalty Costs
The overload penalty cost refers to the additional 

cost incurred when an autonomous delivery 
vehicle  exceeds its rated carrying capacity. 
This cost is imposed as a penalty for overloading 
and is represented by  .

2.4 Model Construction
Incorporating the analysis above, this paper 

aims to minimize the sum of vehicle fixed costs  
 , vehicle transportation costs   , late penalty 

costs , and overload penalty costs  as the 
objective function of this study, as shown in 
Equation (3). The model for the distribution route 
from the park logistics sorting center is 
constructed as follows:

     （1.3）



  



  ∀∈     （1.4）


  



 
  



∀∈∈（1.5）


  



 ≤ max∀∈ （1.6）

 
∈


∈

  ∀∈ （1.7）


∈


  



  
∈


  



  （1.8）


  

  （1.9）
∈∈∈∀∈∈

（2.0）

Equation (1.4) indicates that each distribution 
point can only be served by one vehicle, and all 
distribution points must be served. Equation (1.5) 
ensures the continuity of the vehicle's route, 
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meaning that after a vehicle arrives at a certain 

distribution point , it must depart from that 

distribution point . Equation (1.6) states that the 
total demand of stores on each delivery route 
must not exceed the vehicle's maximum load 
capacity. Equation (1.7) specifies that each 
distribution point can only be served once. 
Equation (1.8) stipulates that vehicles leaving the 
park's logistics sorting center must return to the 
park's logistics sorting center after completing 
their delivery tasks, ensuring the closure of the 
entire route. Equation (1.9) indicates that the 
time a vehicle arrives at the next distribution 
point is the sum of the time the vehicle arrives at 
the previous distribution point, the service time 
at the previous distribution point, and the travel 
time from the previous distribution point to the 
next distribution point, ensuring continuity in 
the vehicle's travel. Equation (2.0) defines the 
range of decision variables.

3. Algorithm design

The core of the basic Particle Swarm 
Optimization algorithm is to update the velocity 
and position of particles based on individual best 
and global best values. The specific algorithm 
model involves setting   particles in a 

-dimensional search space, where the value of m 
can be adjusted according to actual conditions. 
In this space, the entire particle swarm is 
represented by   ⋯ , where each 
particle , during the -th iteration of its own 
velocity and position, is represented by the 

-dimensional position vector ⋯ 

and the flying speed  ⋯  [15]. A 
fitness function is constructed according to the 
actual situation to calculate the fitness value of 
the current population , and it is compared 
with the current position of the particle to 

determine whether the position where the 
particle is located is optimal. From this, the PSO 
algorithm generates two types of extreme values: 
one is the best solution found by the particle 
itself, i.e., the individual best, represented by 
   ⋯   .The other is the best 
solution found by the entire swarm, i.e., the 
global best, represented by 

 


 ⋯. 
Therefore, when looking for these two types of 
extreme values, the standard particle swarm 
updates its velocity and position according to the 
following formulas:

             
       

（2.1）
                 （2.2）

A key characteristic of the PSO algorithm is 
that particles guide each other toward the 
currently discovered optimal positions through 
information sharing. This means that when a 
particle finds an excellent solution, other 
particles will adjust their flight paths to explore 
the area around that solution. This strategy helps 
the particle swarm to focus on areas that seem 
more likely to contain the optimal solution. 
However, this rapid convergence towards the 
optimal solution can also pose some problems. If 
one or more particles in the swarm discover an 
optimal solution that is actually a local optimum 
rather than a global optimum, the swarm may 
mistakenly take this local optimum as the target, 
causing all particles to converge on this local 
optimal position. When all particles are 
concentrated near this local optimum, the 
algorithm loses the ability to explore other areas 
of the solution space and cannot continue to 
search for potentially better solutions. At this 
point, the algorithm becomes trapped in a local 
optimum, leading to the phenomenon of 
premature convergence.

The pseudocode of the PSO algorithm is as 
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follows:

randomly generate an initial population
repeat

for each particle i
if f(xi)> f(pi) then pi=xi;

Pg=max {pi} ;
update velocity;
update position;

end
until temmination criterion is met;

To overcome the issue of Particle Swarm 
Optimization (PSO) algorithms easily getting trapped 
in local optima, this study introduces chaos 
theory into the PSO algorithm. Chaos, a form of 
random motion within nonlinear systems, is 
characterized by extreme sensitivity to initial 
conditions, ergodicity, and quasi-randomness. It 
enables chaotic motion to traverse every point in 
the phase space without repetition over a 
sufficiently long period, which can be leveraged 
for searching the optimal solution. By 
incorporating chaotic concepts into the PSO 
algorithm and optimizing based on these three 
characteristics of chaotic motion, the algorithm 
is enhanced to escape local optima, expand the 
search range, and maintain the diversity of the 
swarm. However, different chaotic mapping 
methods significantly influence the optimization 
process. The Logistic map is frequently cited in 
literature, but comparisons indicate that the Tent 
map offers better uniformity in traversal and 
faster iteration speed than the Logistic map. 
Through rigorous reasoning, it is concluded that 
the Tent map meets the prerequisites for a 
chaotic sequence in optimization algorithms. The 
algorithm employs the Tent map to generate a 
chaotic sequence, with the formula as follows:

    ∈
∈

   （2.3）

This paper proposes a Tent map-based chaotic 
Particle Swarm Optimization algorithm, utilizing 
the population fitness variance as a criterion for 
premature convergence. When the algorithm 

exhibits signs of premature convergence, the 
chaotic Tent map is introduced into the basic 
PSO algorithm. By altering the update strategy of 
individual particle positions, the particle swarm 
is guided to undergo a certain number of chaotic 
updates, enabling the algorithm to escape local 
extrema and thereby enhancing the global 
optimization capability of the PSO algorithm.

The specific computational process of the 
algorithm is as follows:

(1) Initialize parameters, including the maximum 
number of iterations max  , the number 
of particles  , acceleration constants   
and  , maximum inertia weight max and 
minimum value min , maximum velocity 
 , and position boundary max .

(2) Chaotic initialization. Utilize the Tent chaotic 
map to generate   particle positions, with 
initial velocities set to   max.

(3) Evaluate initial particles. Assess each particle 
according to the fitness function , and 
set the individual best for the particle 
swarm as    for the current 
position, and the global particle position 
corresponding to the optimal swarm fitness 
as    .

(4) Begin iteration, determine whether the 
algorithm meets the convergence condition, 
i.e., whether it has reached a certain 
precision or the maximum number of 
iterations? If satisfied, proceed to step 9; 
otherwise, continue to the next step.

(5) Update the particle's velocity  and 
position  , and perform boundary 
processing.

(6) Calculate the fitness value based on the new 
particle and update    and    
according to the new fitness value.

(7) Determine if the particle has reached a state of 
premature convergence. The swarm's 
fitness variation is used to judge whether 
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[Fig. 2] Flowchart of the Improved Particle Swarm
Algorithm Based on the Tent Map

the particle has become prematurely 
convergent. If the conditions for premature 
convergence are satisfied, perform the 
premature treatment as outlined in step 8; 
otherwise, proceed to step 4.

(8) Execute the premature treatment phase, 
perform Tent chaotic mutation on the individual 
best of the swarm particles   , within 
the decision variable space, according to 
formula (13), iteratively generate a chaotic 
sequence of the same quantity as the size 
of the particle's dimensions, repeat multiple 
times, compare the fitness value after adding 
perturbation, and update the global optimal 
position and global optimal solution based 

on the best. Return to step 4.
(9) Output the optimal result and its optimal 

fitness value.
Based on the aforementioned steps, a flowchart of 

the improved algorithm based on the Tent map 
can be drawn as shown in Figure 2.

The improved PSO algorithm presented in this 
paper builds upon the foundation of the standard 
PSO algorithm. It assesses the degree of 
aggregation within the particle swarm by 
monitoring the variance of the swarm's fitness. 
Based on this assessment, the algorithm decides 
whether to introduce a chaotic search via the 
Tent map. This intervention is designed to enable 
the particle swarm to break free from local 
minima during the later iterations, thereby 
enhancing its global search capabilities. The 
ultimate goal is to expedite the discovery of the 
global optimum solution to the problem at hand.

The pseudocode for introducing Tent chaos for 
perturbation is as follows:

Tent map initialization function
function population = Tent_int(cusnum，⋯)
    Initialize positions and velocities
    population = zeros(4, cusnum);
    x = rand(1, cusnum);  
    for i = 1 to cusnum
        if x(i) < 0.5
            x(i) = 2 * x(i);
        else
            x(i) = 2 * (1 - x(i));
        end
    end

This pseudocode outlines the initialization 
process using the Tent map, where xis initialized 
randomly and then transformed according to the 
Tent map rules, which depend on the value of 
   being less than 0.5.

Common test functions such as the Rastrigin 
function and the Griewank function are used to 
evaluate the aforementioned improved PSO algorithm. 
From Figures 3 and 4, it can be observed that the 
enhanced particle swarm algorithm exhibits 
favorable convergence characteristics.
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[Fig. 3] Rastrigin Test Results 

[Fig. 4] Griewank Test Results

4. Example Solution

4.1 Basic Data
This paper selected X Park as a case study for 

research, where deliveries are made from the 
park's logistics center to various locations within 
the park according to agreed-upon times. The 
logistics center possesses several autonomous 
delivery vehicles, all of which are of the same 
model and have the same load capacity. All 
delivery vehicles depart from the park's logistics 
sorting center and must return there after 
completing their delivery tasks, with no pick-up 
tasks involved during the journey.This includes 
route details, demand volumes, delivery time 
information, and the locations of the delivery 
points. The data has been streamlined as follows, 
with comprehensive details provided in Table 1.

Station 
Number X Y DemandReadyTime DueTime Service 

Time
0 35 35 0 0 230 0
1 41 49 10 161 171 10
2 35 17 7 50 60 10
3 55 45 13 116 126 10
4 55 20 19 149 159 10
5 15 30 26 34 44 10
6 25 30 3 99 109 10
7 20 50 5 81 91 10
8 10 43 9 95 105 10
9 55 60 16 97 107 10
10 30 60 16 124 134 10
11 20 65 12 67 77 10
12 50 35 19 63 73 10
13 30 25 23 159 169 10
14 15 10 20 32 42 10
15 30 5 8 61 71 10
16 10 20 19 75 85 10
17 5 30 2 157 167 10
18 20 40 12 87 97 10
19 15 60 17 76 86 10
20 45 65 9 126 136 10
21 45 20 11 62 72 10
22 45 10 18 97 107 10
23 55 5 29 68 78 10
24 65 35 3 153 163 10
25 65 20 6 172 182 10
26 45 30 17 132 142 10
27 35 40 16 37 47 10
28 41 37 16 39 49 10
29 64 42 9 63 73 10
30 40 60 21 71 81 10
31 31 52 27 50 60 10
32 35 69 23 141 151 10
33 53 52 11 37 47 10
34 65 55 14 117 127 10
35 63 65 8 143 153 10
36 2 60 5 41 51 10
37 20 20 8 134 144 10
38 5 5 16 83 93 10
39 60 12 31 44 54 10
40 40 25 9 85 95 10
41 42 7 5 97 107 10
42 24 12 5 31 41 10
43 23 3 7 132 142 10
44 11 14 18 69 79 10
45 6 38 16 32 42 10
46 2 48 1 117 127 10
47 8 56 27 51 61 10
48 13 52 36 165 175 10
49 6 68 30 108 118 10
50 47 47 13 124 134 10
51 49 58 10 88 98 10

<Table 1> Base data

4.2 Example Solution Results
The experimental algorithm was simulated in 

Matlab2023a, and the computer operating environment 
was Windows 10 platform，2.9 GHz CPU 6-core 
i5 processor, 16 GB memory. The TPSO algorithm 
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proposed in this paper was programmed in 
MATLAB2023a and the global optimal particle was 
decoded to obtain the following global optimal path 
distribution solution, as shown in Figure 5.

[Fig. 5] TPSO global optimal distribution solution 
route map

In Figure 5, the X and Y axes represent the 
simplified coordinates of the distribution points 
within the park. Each circle represents a 
distribution point, and lines of different colors 
represent different delivery vehicles. Circles 
connected by lines of the same color indicate all 
the distribution points visited by one vehicle.

The optimal delivery plans obtained through 
simulation calculations for the autonomous 
delivery vehicles are as follows:

Delivery Route 1: 0->28->12->3->24->0.
Delivery Route 2: 0->45->18->10->0.
Delivery Route 3: 0->31->30->20->32->0.
Delivery Route 4: 0->14->44->38->37->0.
Delivery Route 5: 0->39->23->22->4->25->0.
Delivery Route 6: 0->33->29->9->34->35->0.
Delivery Route 7: 0->27->50->1->0.
Delivery Route 8: 0->2->21->40->26->0.
Delivery Route 9: 0->5->16->6->0.
Delivery Route 10: 0->11->19->49->48->0.
Delivery Route 11: 0->36->47->7->8->46->17->0.
Delivery Route 12: 0->42->15->41->43->13->0.
In the implementation of the Tent-Enhanced 

Particle Swarm Optimization (TPSO) algorithm, 

the parameter settings were as follows: the penalty 
function coefficient for capacity constraints was 
set to 10; for time window constraints, it was 
100; the number of particles was 50; the number 
of iterations was 100; and the parameter for the 
chaotic map was 0.5. The resulting global optimal 
delivery plan yielded a total cost of the global 
optimal solution of 1053.9134, with 12 vehicles used, 
a total travel distance of 1053.9134, and no violations 
in terms of constraint paths or customer constraints.

4.3 Comparative Analysisclear
Figures 6 and 7 display the global optimal 

delivery plans obtained through 100 generations 
of iteration using traditional Particle Swarm 
Optimization (PSO) and Genetic Algorithm (GA) 
in Matlab simulations, respectively.

 

[Fig. 6] PSO global optimal distribution solution route 
map

  

[Fig. 7] GA global optimal distribution solution route 
map
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The traditional PSO algorithm, after 100 
generations of data iteration and convergence, 
obtained a total cost of 1057.8177 for the global 
optimal delivery plan. The GA algorithm, after 
iteration and convergence, obtained a total cost 
of 1093.1074 for the global optimal delivery plan.

[Fig. 8] Relationship between Iteration Counts and 
Optimal Objective Function Values for 
TPSO, GA, and PSO Algorithms.

In Figure 8, it can be observed that the TPSO 
algorithm has a significantly faster convergence 
rate compared to the Particle Swarm Optimization 
and Genetic Algorithm. In terms of the total cost 
of the optimal solutions obtained, TPSO outperforms 
the comparative sample algorithms.

Algorithm Total Cost Vehicles Distance  Routes Violating 
Constraints

TPSO 1053.9134 12 1053.9134 0

PSO 1057.8177 12 1057.8177 0

GA 1093.1074 13 1093.1074 0

<Table 2> Cost Comparison of the Three Algorithms

From Table 2, it can be observed that when 
comparing the TPSO algorithm presented in this 
paper with the PSO and GA algorithms, the TPSO 
outperforms the traditional Particle Swarm 
Optimization and Genetic Algorithm in terms of 
total cost of the optimal solution, number of 
vehicles used, and total distance traveled. The 
TPSO demonstrates superior performance in 
solving the multi-vehicle multi-task routing 
problem in the park delivery.

5. Conclusion

This paper explores the path planning for 
multi-vehicle and multi-task autonomous delivery 
vehicles in parks using an improved Particle Swarm 
Optimization algorithm. The study introduces the 
Tent map into the basic PSO algorithm and 
integrates considerations for time and load costs 
during the computation process. By applying the 
Tent chaotic mapping with a certain probability 
when local optima may occur, the algorithm can 
escape from these suboptimal solutions. The 
TPSO algorithm effectively combines the global 
traversal, randomness, and regularity of the Tent 
map with the multidimensional space optimization 
capability of the PSO algorithm, enhancing the 
algorithm's resistance to premature convergence 
and improving its global search ability, as well as 
accelerating the speed of iterative convergence. 
Comparative simulation experiments with several 
commonly used path planning algorithms have 
fully demonstrated these advantages, indicating 
that the TPSO algorithm can effectively address 
the issues of basic PSO algorithms falling into 
local optima and slow convergence when solving 
route planning problems for autonomous delivery 
vehicles in parks. It should be noted that there is 
still much room for improvement in this 
research, especially in dealing with local path 
planning, which requires further refinement.
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